New flexible subgridding scheme for the finite integration technique

被引:51
作者
Podebrad, O [1 ]
Clemens, M [1 ]
Weiland, T [1 ]
机构
[1] Tech Univ Darmstadt, Dept Elect Engn & Informat Technol, Computat Electromagnet Lab TEMF, D-64289 Darmstadt, Germany
关键词
discretization; finite difference time domain (FDTD); finite integration technique (FIT); frequency domain; local mesh refinement; static fields; subgridding;
D O I
10.1109/TMAG.2003.810521
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new flexible subgridding scheme for the finite. integration technique is presented which can be applied foe the numerical simulation of electromagnetic phenomena in static, time, and frequency domains as well as for the eigenmode computation. Numerical simulations both in the static as well as in the high-frequency regime are presented to give evidence of the improved efficiency of the scheme and its longterm stability in time-domain simulations.
引用
收藏
页码:1662 / 1665
页数:4
相关论文
共 13 条
[1]   FDTD local grid with material traverse [J].
Chevalier, MW ;
Luebbers, RJ ;
Cable, VP .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1997, 45 (03) :411-421
[2]   A local mesh refinement algorithm for the FDFD method using a polygonal grid [J].
Klingbeil, H ;
Beilenhoff, K ;
Hartnagel, HL .
IEEE MICROWAVE AND GUIDED WAVE LETTERS, 1996, 6 (01) :52-54
[3]  
Körner TO, 1999, INT J NUMER MODEL EL, V12, P143, DOI 10.1002/(SICI)1099-1204(199901/04)12:1/2<143::AID-JNM321>3.0.CO
[4]  
2-D
[5]  
Lang J, 2001, ADAPTIVE MULTILEVEL
[6]   Three-dimensional subgridding algorithm for FDTD [J].
Okoniewski, M ;
Okoniewska, E ;
Stuchly, MA .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1997, 45 (03) :422-429
[7]  
PODEBRAD O, 2001, THESIS
[8]  
Thoma P, 1996, INT J NUMER MODEL EL, V9, P359, DOI 10.1002/(SICI)1099-1204(199609)9:5<359::AID-JNM245>3.0.CO
[9]  
2-A
[10]   Numerical stability of finite difference time domain methods [J].
Thoma, P ;
Weiland, T .
IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (05) :2740-2743