Enzymatic activity of two caspases related to interleukin-1β-converting enzyme

被引:13
作者
Fassy, F
Krebs, O
Rey, H
Komara, B
Gillard, C
Capdevila, C
Yea, C
Faucheu, C
Blanchet, AM
Miossec, C
Diu-Hercend, A
机构
[1] Hoechst Marion Roussel, F-93235 Romainville, France
[2] Hoechst Roussel Pharmaceut Pty Ltd, Swindon, Wilts, England
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 1998年 / 253卷 / 01期
关键词
caspase; cysteine protease; interleukin-1 beta-converting enzyme homolog; interleukin-1; beta;
D O I
10.1046/j.1432-1327.1998.2530076.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Interleukin-1 beta-converting enzyme is a member of a family of human cysteine proteases with specificity for aspartic acid, which have been named caspases. Within this family of enzymes, transcript X (TX) and transcript Y (TY) (caspases 4 and 5, respectively) are very similar to ICE (caspase 1) and form the ICE subfamily. Given the high degree of conservation in the sequences of these proteases (more than 50% amino acid identity in the mature enzymes), it was of interest to examine whether they shared similar substrate specificities. The three enzymes, ICE, TX and TY, were therefore expressed in boculovirus-infected insect cells, as 30-kDa proteins lacking the propeptide. Automaturation into p20 and p10 subunits occured within the cells. Active ICE, TX and TY were collected in the cell culture supernatants. In addition, their production induced the activation of an endogenous 32-kDa putative cysteine protease (CPP32) like caspase. T7-tagged ICE, TX and TY were purified by immunoaffinity and tested for their catalytic efficiency on YVAD-containing synthetic substrates and an the ICE natural substrate, pro-interleukin-1 beta. TX cleaved the same synthetic substrates as ICE (K-m of 90 mu M and K-cat of 0.4 s(-1) for Suc-YVAD-NH-Mec, where Suc represents succinyl and NH-Mec represents amino-1-methylcoumarin) and could cleave pro-interleukin-1 beta into the same peptides as ICE but less efficiently. On the other hand, TY showed very little efficacy on the different ICE substrates (K-m of 860 mu M for Suc-YVAD-NH-Mec). These results show that the ICE/TX/TY subfamily has functional heterogeneity and that ICE remains the preferred enzyme for pro-interleukin-1 beta cleavage.
引用
收藏
页码:76 / 83
页数:8
相关论文
共 34 条
[1]   Spodoptera frugiperda caspase-1, a novel insect death protease that cleaves the nuclear immunophilin FKBP46, is the target of the baculovirus antiapoptotic protein p35 [J].
Ahmad, M ;
Srinivasula, SM ;
Wang, LJ ;
Litwack, G ;
FernandesAlnemri, T ;
Alnemri, ES .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (03) :1421-1424
[2]   Human ICE/CED-3 protease nomenclature [J].
Alnemri, ES ;
Livingston, DJ ;
Nicholson, DW ;
Salvesen, G ;
Thornberry, NA ;
Wong, WW ;
Yuan, JY .
CELL, 1996, 87 (02) :171-171
[3]   Apoptotic suppression by baculovirus P35 involves cleavage by and inhibition of a virus-induced CED-3/ICE-like protease [J].
Bertin, J ;
Mendrysa, SM ;
LaCount, DJ ;
Gaur, S ;
Krebs, JF ;
Armstrong, RC ;
Tomaselli, KJ ;
Friesen, PD .
JOURNAL OF VIROLOGY, 1996, 70 (09) :6251-6259
[4]  
CRIEKINGE WV, 1996, J BIOL CHEM, V271, P27245
[5]   P-1 ASPARTATE-BASED PEPTIDE ALPHA-((2,6-DICHLOROBENZOYL)OXY)METHYL KETONES AS POTENT TIME-DEPENDENT INHIBITORS OF INTERLEUKIN-1-BETA-CONVERTING ENZYME [J].
DOLLE, RE ;
HOYER, D ;
PRASAD, CVC ;
SCHMIDT, SJ ;
HELASZEK, CT ;
MILLER, RE ;
ATOR, MA .
JOURNAL OF MEDICINAL CHEMISTRY, 1994, 37 (05) :563-564
[6]   Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis [J].
Enari, M ;
Talanian, RV ;
Wong, WW ;
Nagata, S .
NATURE, 1996, 380 (6576) :723-726
[7]   A NOVEL HUMAN PROTEASE SIMILAR TO THE INTERLEUKIN-1-BETA CONVERTING-ENZYME INDUCES APOPTOSIS IN TRANSFECTED CELLS [J].
FAUCHEU, C ;
DIU, A ;
CHAN, AWE ;
BLANCHET, AM ;
MIOSSEC, C ;
HERVE, F ;
COLLARDDUTILLEUL, V ;
GU, Y ;
ALDAPE, RA ;
LIPPKE, JA ;
ROCHER, C ;
SU, MSS ;
LIVINGSTON, DJ ;
HERCEND, T ;
LALANNE, JL .
EMBO JOURNAL, 1995, 14 (09) :1914-1922
[8]   Identification of a cysteine protease closely related to interleukin-1 beta-converting enzyme [J].
Faucheu, C ;
Blanchet, AM ;
CollardDutilleul, V ;
Lalanne, JL ;
DiuHercend, A .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1996, 236 (01) :207-213
[9]   In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains [J].
FernandesAlnemri, T ;
Armstrong, RC ;
Krebs, J ;
Srinivasula, SM ;
Wang, L ;
Bullrich, F ;
Fritz, LC ;
Trapani, JA ;
Tomaselli, KJ ;
Litwack, G ;
Alnemri, ES .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (15) :7464-7469
[10]   Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production [J].
Ghayur, T ;
Banerjee, S ;
Hugunin, M ;
Butler, D ;
Herzog, L ;
Carter, A ;
Quintal, L ;
Sekut, L ;
Talanian, R ;
Paskind, M ;
Wong, W ;
Kamen, R ;
Tracey, D ;
Allen, H .
NATURE, 1997, 386 (6625) :619-623