MyoD is functionally linked to the silencing of a muscle-specific regulatory gene prior to skeletal myogenesis

被引:126
作者
Mal, A [1 ]
Harter, ML [1 ]
机构
[1] Cleveland Clin Fdn, Lerner Res Inst, Dept Mol Biol, Cleveland, OH 44195 USA
关键词
D O I
10.1073/pnas.0437843100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Most of the genes that are central to the process of skeletal muscle differentiation remain in a transcriptionally silent or "off" state until muscle cells (myoblasts) are induced to differentiate. Although the mechanisms that contribute to this phenomenon are still unclear, it is likely that histone deacetylases (HDACs), which play an important role in the repression of genes, are principally involved. Recent studies indicate that the initiator of the myogenic program, namely MyoD, can associate with the deacetylase HDAC1 in vivo, and because HDACs are usually recruited to promoters by specific proteins, we considered the possibility that these two proteins might be acting together at the promoters of muscle-specific genes to repress their transcription in myoblasts. In this work, we show by chromatin immunoprecipitation (ChIP) assays that MyoD and HDAC1 are both occupying the promoter of myogenin and that this gene is in a region of repressed chromatin, as revealed by enrichment in histone H3 lysine 9 (Lys-9) methylation and the underacetylation of histories. Surprisingly, after the myoblasts are induced to differentiate, the promoter becomes absent of HDAC1, and eventually the acetyltransferase P/CAF takes it place alongside MyoD. In addition, enrichment of histone H3 acetylation (Lys-9/14) and phosphorylation of Ser-10 can now be observed at the myogenin promoter. These data strongly suggest that in addition to its widely accepted role as an activator of differentiation-specific genes, MyoD also can perform as a transcriptional repressor in proliferating myoblasts while in partnership with a HDAC.
引用
收藏
页码:1735 / 1739
页数:5
相关论文
共 34 条
[1]   Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins which complex with the heterochromatin component M31 [J].
Aagaard, L ;
Laible, G ;
Selenko, P ;
Schmid, M ;
Dorn, R ;
Schotta, G ;
Kuhfittig, S ;
Wolf, A ;
Lebersorger, A ;
Singh, PB ;
Reuter, G ;
Jenuwein, T .
EMBO JOURNAL, 1999, 18 (07) :1923-1938
[2]   Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain [J].
Bannister, AJ ;
Zegerman, P ;
Partridge, JF ;
Miska, EA ;
Thomas, JO ;
Allshire, RC ;
Kouzarides, T .
NATURE, 2001, 410 (6824) :120-124
[3]  
BRAUN T, 1994, DEVELOPMENT, V120, P3083
[4]   Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation [J].
Cheung, P ;
Tanner, KG ;
Cheung, WL ;
Sassone-Corsi, P ;
Denu, JM ;
Allis, CD .
MOLECULAR CELL, 2000, 5 (06) :905-915
[5]   Phosphoacetylation of histone H3 on c-fos- and c-jun-associated nucleosomes upon gene activation [J].
Clayton, AL ;
Rose, S ;
Barratt, MJ ;
Mahadevan, LC .
EMBO JOURNAL, 2000, 19 (14) :3714-3726
[6]  
CORBEIL HB, 1995, ONCOGENE, V11, P909
[7]   Translating the histone code [J].
Jenuwein, T ;
Allis, CD .
SCIENCE, 2001, 293 (5532) :1074-1080
[8]   Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins [J].
Lachner, M ;
O'Carroll, N ;
Rea, S ;
Mechtler, K ;
Jenuwein, T .
NATURE, 2001, 410 (6824) :116-120
[9]   REGULATORY MECHANISMS THAT COORDINATE SKELETAL-MUSCLE DIFFERENTIATION AND CELL-CYCLE WITHDRAWAL [J].
LASSAR, AB ;
SKAPEK, SX ;
NOVITCH, B .
CURRENT OPINION IN CELL BIOLOGY, 1994, 6 (06) :788-794
[10]   Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14 [J].
Lo, WS ;
Trievel, RC ;
Rojas, JR ;
Duggan, L ;
Hsu, JY ;
Allis, CD ;
Marmorstein, R ;
Berger, SL .
MOLECULAR CELL, 2000, 5 (06) :917-926