CLE Peptides Control Medicago truncatula Nodulation Locally and Systemically

被引:253
作者
Mortier, Virginie
Den Herder, Griet
Whitford, Ryan
Van de Velde, Willem
Rombauts, Stephane
D'haeseleer, Katrien
Holsters, Marcelle [1 ]
Goormachtig, Sofie
机构
[1] VIB, Dept Plant Syst Biol, B-9052 Ghent, Belgium
关键词
AUXIN TRANSPORT REGULATION; ROOT-NODULE DEVELOPMENT; OF-FUNCTION PHENOTYPES; RECEPTOR-LIKE KINASES; STEM-CELL FATE; LOTUS-JAPONICUS; ARABIDOPSIS-THALIANA; ORGAN DEVELOPMENT; RHIZOBIUM-MELILOTI; GENE-EXPRESSION;
D O I
10.1104/pp.110.153718
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The CLAVATA3/embryo-surrounding region (CLE) peptides control the fine balance between proliferation and differentiation in plant development. We studied the role of CLE peptides during indeterminate nodule development and identified 25 MtCLE peptide genes in the Medicago truncatula genome, of which two genes, MtCLE12 and MtCLE13, had nodulation-related expression patterns that were linked to proliferation and differentiation. MtCLE13 expression was up-regulated early in nodule development. A high-to-low expression gradient radiated from the inner toward the outer cortical cell layers in a region defining the incipient nodule. At later stages, MtCLE12 and MtCLE13 were expressed in differentiating nodules and in the apical part of mature, elongated nodules. Functional analysis revealed a putative role for MtCLE12 and MtCLE13 in autoregulation of nodulation, a mechanism that controls the number of nodules and involves systemic signals mediated by a leucine-rich repeat receptor-like kinase, SUNN, which is active in the shoot. When MtCLE12 and MtCLE13 were ectopically expressed in transgenic roots, nodulation was abolished at the level of the nodulation factor signal transduction, and this inhibition involved long-distance signaling. In addition, composite plants with roots ectopically expressing MtCLE12 or MtCLE13 had elongated petioles. This systemic effect was not observed in transgenic roots ectopically expressing MtCLE12 and MtCLE13 in a sunn-1 mutant background, although nodulation was still strongly reduced. These results suggest multiple roles for CLE signaling in nodulation.
引用
收藏
页码:222 / 237
页数:16
相关论文
共 94 条
[1]   AP2-ERF transcription factors mediate nod factor-dependent mt ENOD11 activation in root hairs via a novel cis-regulatory motif [J].
Andriankaja, Andry ;
Boisson-Demier, Aurelien ;
Frances, Lisa ;
Sauviac, Laurent ;
Jauneau, Alain ;
Barker, David G. ;
de Carvalho-Niebel, Fernanda .
PLANT CELL, 2007, 19 (09) :2866-2885
[2]   Improved prediction of signal peptides: SignalP 3.0 [J].
Bendtsen, JD ;
Nielsen, H ;
von Heijne, G ;
Brunak, S .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 340 (04) :783-795
[3]   Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed) [J].
Bevis, BJ ;
Glick, BS .
NATURE BIOTECHNOLOGY, 2002, 20 (01) :83-87
[4]  
Blondon F., 1964, REV GEN BOT, V71, P293
[5]   Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations [J].
Boisson-Dernier, A ;
Chabaud, M ;
Garcia, F ;
Bécard, G ;
Rosenberg, C ;
Barker, DG .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2001, 14 (06) :695-700
[6]   Lipochitin oligosaccharides from Rhizobium leguminosarum bv. viciae reduce auxin transport capacity in Vicia sativa subsp nigra roots [J].
Boot, KJM ;
van Brussel, AAN ;
Tak, T ;
Spaink, HP ;
Kijne, JW .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1999, 12 (10) :839-844
[7]   The sym35 gene required for root nodule development in pea is an ortholog of nin from Lotus japonicus [J].
Borisov, AY ;
Madsen, LH ;
Tsyganov, VE ;
Umehara, Y ;
Voroshilova, VA ;
Batagov, AO ;
Sandal, N ;
Mortensen, A ;
Schauser, L ;
Ellis, N ;
Tikhonovich, IA ;
Stougaard, J .
PLANT PHYSIOLOGY, 2003, 131 (03) :1009-1017
[8]   A standardized method for analysis of Medicago truncatula phenotypic development [J].
Bucciarelli, Bruna ;
Hanan, Jim ;
Palmquist, Debra ;
Vance, Carroll P. .
PLANT PHYSIOLOGY, 2006, 142 (01) :207-219
[9]   Four genes of Medicago truncatula controlling components of a nod factor transduction pathway [J].
Catoira, R ;
Galera, C ;
de Billy, F ;
Penmetsa, RV ;
Journet, EP ;
Maillet, F ;
Rosenberg, C ;
Cook, D ;
Gough, C ;
Dénarié, J .
PLANT CELL, 2000, 12 (09) :1647-1665
[10]   Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti [J].
Cheng, HP ;
Walker, GC .
JOURNAL OF BACTERIOLOGY, 1998, 180 (19) :5183-5191