Optimal N-to-M cloning of conjugate quantum variables -: art. no. 040301

被引:93
作者
Cerf, NJ
Iblisdir, S
机构
[1] Free Univ Brussels, Ecole Polytech, B-1050 Brussels, Belgium
[2] CALTECH, Jet Prop Lab, Informat & Comp Technol Res Stn, Pasadena, CA 91109 USA
来源
PHYSICAL REVIEW A | 2000年 / 62卷 / 04期
关键词
D O I
10.1103/PhysRevA.62.040301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The cloning of conjugate continuous quantum variables is analyzed based on the concept of Gaussian cloning machines, i.e., transformations that yield copies that are Gaussian mixtures centered on the state to be copied. The optimality of Gaussian cloning machines that transform N identical input states into M output states is investigated, and bounds on the fidelity of the process are derived via a connection with quantum estimation theory. In particular, the optimal N-to-M cloning fidelity fdr coherent states is found to be equal to MN/(MN+M-N).
引用
收藏
页数:3
相关论文
共 21 条
[11]   Optimal quantum cloning machines [J].
Gisin, N ;
Massar, S .
PHYSICAL REVIEW LETTERS, 1997, 79 (11) :2153-2156
[12]   Quantum cloning without signaling [J].
Gisin, N .
PHYSICS LETTERS A, 1998, 242 (1-2) :1-3
[13]  
Helstrom C. W., 1976, Quantum Detection and Estimation Theory, P266
[14]  
HOLEVO AS, 1982, PROBABILISTIC STAT A, P278
[15]   Optimal cloning of pure states, testing single clones [J].
Keyl, M ;
Werner, RF .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (07) :3283-3299
[16]   IS A PHOTON AMPLIFIER ALWAYS POLARIZATION DEPENDENT [J].
MANDEL, L .
NATURE, 1983, 304 (5922) :188-188
[17]   Optimal copying of one quantum bit [J].
Niu, CS ;
Griffiths, RB .
PHYSICAL REVIEW A, 1998, 58 (06) :4377-4393
[18]   SIMULTANEOUS MEASUREMENT OF CONJUGATE VARIABLES [J].
STENHOLM, S .
ANNALS OF PHYSICS, 1992, 218 (02) :233-254
[19]  
Walls D. F., 1995, QUANTUM OPTICS
[20]   Optimal cloning of pure states [J].
Werner, RF .
PHYSICAL REVIEW A, 1998, 58 (03) :1827-1832