Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond

被引:537
作者
Acosta, V. M. [1 ]
Bauch, E. [1 ,2 ]
Ledbetter, M. P. [1 ]
Waxman, A. [3 ]
Bouchard, L-S. [4 ]
Budker, D. [1 ,5 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Tech Univ Berlin, D-10623 Berlin, Germany
[3] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel
[4] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[5] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
ATOMIC MAGNETOMETER; DEFECT CENTERS; SPIN; MICROSCOPY; NMR;
D O I
10.1103/PhysRevLett.104.070801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The temperature dependence of the magnetic-resonance spectra of nitrogen-vacancy (NV(-)) ensembles in the range of 280-330 K was studied. Four samples prepared under different conditions were analyzed with NV(-) concentrations ranging from 10 ppb to 15 ppm. For all samples, the axial zero-field splitting (ZFS) parameter D was found to vary significantly with temperature, T, as dD/dT = -74.2(7) kHz/K. The transverse ZFS parameter E was nonzero (between 4 and 11 MHz) in all samples, and exhibited a temperature dependence of dE/(EdT) = -1.4(3) x 10(-4) K(-1). The results might be accounted for by considering local thermal expansion. The temperature dependence of the ZFS parameters presents a significant challenge for diamond magnetometers and may ultimately limit their bandwidth and sensitivity.
引用
收藏
页数:4
相关论文
共 34 条
[1]   Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications [J].
Acosta, V. M. ;
Bauch, E. ;
Ledbetter, M. P. ;
Santori, C. ;
Fu, K. -M. C. ;
Barclay, P. E. ;
Beausoleil, R. G. ;
Linget, H. ;
Roch, J. F. ;
Treussart, F. ;
Chemerisov, S. ;
Gawlik, W. ;
Budker, D. .
PHYSICAL REVIEW B, 2009, 80 (11)
[2]   Polarization-selective excitation of nitrogen vacancy centers in diamond [J].
Alegre, Thiago P. Mayer ;
Santori, Charles ;
Medeiros-Ribeiro, Gilberto ;
Beausoleil, Raymond G. .
PHYSICAL REVIEW B, 2007, 76 (16)
[3]   Nanoscale imaging magnetometry with diamond spins under ambient conditions [J].
Balasubramanian, Gopalakrishnan ;
Chan, I. Y. ;
Kolesov, Roman ;
Al-Hmoud, Mohannad ;
Tisler, Julia ;
Shin, Chang ;
Kim, Changdong ;
Wojcik, Aleksander ;
Hemmer, Philip R. ;
Krueger, Anke ;
Hanke, Tobias ;
Leitenstorfer, Alfred ;
Bratschitsch, Rudolf ;
Jelezko, Fedor ;
Wrachtrup, Joerg .
NATURE, 2008, 455 (7213) :648-U46
[4]  
Balasubramanian G, 2009, NAT MATER, V8, P383, DOI [10.1038/nmat2420, 10.1038/NMAT2420]
[5]  
BOUCHARD LS, ARXIV09112533V1
[6]   Optical magnetometry [J].
Budker, Dmitry ;
Romalis, Michael .
NATURE PHYSICS, 2007, 3 (04) :227-234
[7]  
Clarke J., 2004, SQUID HDB, V1
[8]   Carbon nanotube superconducting quantum interference device [J].
Cleuziou, J. -P. ;
Wernsdorfer, W. ;
Bouchiat, V. ;
Ondarcuhu, T. ;
Monthioux, M. .
NATURE NANOTECHNOLOGY, 2006, 1 (01) :53-59
[9]   LUMINESCENCE QUENCHING AND ZERO-PHONON LINE BROADENING ASSOCIATED WITH DEFECT INTERACTIONS IN DIAMOND [J].
DAVIES, G ;
CROSSFIELD, M .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1973, 6 (05) :L104-L108
[10]   Hyperfine interaction in the ground state of the negatively charged nitrogen vacancy center in diamond [J].
Felton, S. ;
Edmonds, A. M. ;
Newton, M. E. ;
Martineau, P. M. ;
Fisher, D. ;
Twitchen, D. J. ;
Baker, J. M. .
PHYSICAL REVIEW B, 2009, 79 (07)