Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev-Besov space results and the Poisson problem

被引:99
作者
Mitrea, M [1 ]
Taylor, M
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jfan.2000.3619
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We continue a program to develop layer potential techniques for PDE on Lipschitz domains in Riemannian manifolds. Building on L-p and Hardy space estimates established in previous papers, here we establish Sobolev and Besov space estimates on solutions to the Dirichlet and Neumann problems for the Laplace operator plus a potential, on a Lipschitz domain in a Riemannian manifold with a metric tensor smooth of class C1 + gamma, for some gamma > 0. We treat the inhomogeneous problem and extend it to the setting of manifolds results obtained for the constant-coefficient Laplace operator on a Lipschitz domain in Euclidean space, with the Dirichlet boundary condition, by D. Jerison and C. Kenig. (C) 2000 Academic Press.
引用
收藏
页码:1 / 79
页数:79
相关论文
共 49 条
[1]   The inhomogeneous Dirichlet problem for Δ2 in Lipschitz domains [J].
Adolfsson, V ;
Pipher, J .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 159 (01) :137-190
[2]   ESTIMATES NEAR BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .2. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1964, 17 (01) :35-&
[3]  
[Anonymous], 1984, FUNCTION SPACES SUBS
[4]  
AUSCHER P, 1998, SQUARE ROOT LAPLACIA
[5]  
Bennet C., 1988, INTERPOLATION OPERAT
[6]  
Bergh J., 1976, INTERPOLATION SPACES
[7]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[9]  
Calderon A.-P., 1964, Studia Math., V24, P113, DOI DOI 10.4064/SM-24-2-113-190
[10]   CAUCHY INTEGRALS ON LIPSCHITZ CURVES AND RELATED OPERATORS [J].
CALDERON, AP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1977, 74 (04) :1324-1327