Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev-Besov space results and the Poisson problem

被引:99
作者
Mitrea, M [1 ]
Taylor, M
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jfan.2000.3619
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We continue a program to develop layer potential techniques for PDE on Lipschitz domains in Riemannian manifolds. Building on L-p and Hardy space estimates established in previous papers, here we establish Sobolev and Besov space estimates on solutions to the Dirichlet and Neumann problems for the Laplace operator plus a potential, on a Lipschitz domain in a Riemannian manifold with a metric tensor smooth of class C1 + gamma, for some gamma > 0. We treat the inhomogeneous problem and extend it to the setting of manifolds results obtained for the constant-coefficient Laplace operator on a Lipschitz domain in Euclidean space, with the Dirichlet boundary condition, by D. Jerison and C. Kenig. (C) 2000 Academic Press.
引用
收藏
页码:1 / 79
页数:79
相关论文
共 49 条
[11]   THE CAUCHY INTEGRAL DEFINES AN OPERATOR ON L2 FOR LIPSCHITZ-CURVES [J].
COIFMAN, RR ;
MCINTOSH, A ;
MEYER, Y .
ANNALS OF MATHEMATICS, 1982, 116 (02) :361-387
[12]   EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS [J].
COIFMAN, RR ;
WEISS, G .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) :569-645
[13]   Riesz transforms for 1≤p≤2 [J].
Coulhon, T ;
Duong, XT .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (03) :1151-1169
[14]   LQ-ESTIMATES FOR GREEN POTENTIALS IN LIPSCHITZ DOMAINS [J].
DAHLBERG, BEJ .
MATHEMATICA SCANDINAVICA, 1979, 44 (01) :149-170
[15]   Area integral estimates for higher order elliptic equations and systems [J].
Dahlberg, BEJ ;
Kenig, CE ;
Pipher, J ;
Verchota, GC .
ANNALES DE L INSTITUT FOURIER, 1997, 47 (05) :1425-+
[16]   HARDY-SPACES AND THE NEUMANN PROBLEM IN L-RHO FOR LAPLACES-EQUATION IN LIPSCHITZ-DOMAINS [J].
DAHLBERG, BEJ ;
KENIG, CE .
ANNALS OF MATHEMATICS, 1987, 125 (03) :437-465
[17]  
DAHLBERG BEJ, 1977, ARCH RATION MECH AN, V65, P276
[18]   INTERIOR ESTIMATES FOR ELLIPTIC SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS [J].
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1955, 8 (04) :503-538
[19]  
DUONG X, 1998, LP BOUNDEDNESS RIESZ
[20]   Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains [J].
Fabes, E ;
Mendez, O ;
Mitrea, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 159 (02) :323-368