Selective inhibition of Alu retrotransposition by APOBEC3G

被引:116
作者
Hulme, Amy E. [1 ]
Bogerd, Hal P.
Cullen, Bryan R.
Moran, John V.
机构
[1] Univ Michigan, Sch Med, Dept Human Genet, Ann Arbor, MI 48109 USA
[2] Duke Univ, Med Ctr, Ctr Virol, Durham, NC 27710 USA
[3] Duke Univ, Med Ctr, Dept Mol Genet & Microbiol, Durham, NC 27710 USA
[4] Univ Michigan, Sch Med, Dept Internal Med, Ann Arbor, MI 48109 USA
关键词
LINE-1; retrotransposon; APOBEC; transposable element;
D O I
10.1016/j.gene.2006.08.032
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The non-LTR retrotransposon LINE-1 (L1) comprises similar to 17% of the human genome, and the L1-encoded proteins can function in trans to mediate the retrotransposition of non-autonomous retrotransposons (i.e., Alu and probably SVA elements) and cellular mRNAs to generate processed pseudogenes. Here, we have examined the effect of APOBEC3G and APOBEC3F, cytidine deaminases that inhibit Vif-deficient HIV-1 replication, on Alu retrotransposition and other L1-mediated retrotransposition processes. We demonstrate that APOBEC3G selectively inhibits Alu retrotransposition in an OR-F I p-in dependent manner. An active cytidine deaminase site is not required for the inhibition of Alu retrotransposition and the resultant integration events lack G to A or C to T hypermutation. These data demonstrate a differential restriction of L1 and Alu retrotransposition by APOBEC3G, and suggest that the Alu ribonucleoprotein complex may be targeted by APOBEC3G. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:199 / 205
页数:7
相关论文
共 52 条
[31]   Initial sequencing and analysis of the human genome [J].
Lander, ES ;
Int Human Genome Sequencing Consortium ;
Linton, LM ;
Birren, B ;
Nusbaum, C ;
Zody, MC ;
Baldwin, J ;
Devon, K ;
Dewar, K ;
Doyle, M ;
FitzHugh, W ;
Funke, R ;
Gage, D ;
Harris, K ;
Heaford, A ;
Howland, J ;
Kann, L ;
Lehoczky, J ;
LeVine, R ;
McEwan, P ;
McKernan, K ;
Meldrim, J ;
Mesirov, JP ;
Miranda, C ;
Morris, W ;
Naylor, J ;
Raymond, C ;
Rosetti, M ;
Santos, R ;
Sheridan, A ;
Sougnez, C ;
Stange-Thomann, N ;
Stojanovic, N ;
Subramanian, A ;
Wyman, D ;
Rogers, J ;
Sulston, J ;
Ainscough, R ;
Beck, S ;
Bentley, D ;
Burton, J ;
Clee, C ;
Carter, N ;
Coulson, A ;
Deadman, R ;
Deloukas, P ;
Dunham, A ;
Dunham, I ;
Durbin, R ;
French, L .
NATURE, 2001, 409 (6822) :860-921
[32]   Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts [J].
Mangeat, B ;
Turelli, P ;
Caron, G ;
Friedli, M ;
Perrin, L ;
Trono, D .
NATURE, 2003, 424 (6944) :99-103
[33]   REVERSE-TRANSCRIPTASE ENCODED BY A HUMAN TRANSPOSABLE ELEMENT [J].
MATHIAS, SL ;
SCOTT, AF ;
KAZAZIAN, HH ;
BOEKE, JD ;
GABRIEL, A .
SCIENCE, 1991, 254 (5039) :1808-1810
[34]   IDENTIFICATION OF AN INTERNAL CIS-ELEMENT ESSENTIAL FOR THE HUMAN L1 TRANSCRIPTION AND A NUCLEAR FACTOR(S) BINDING TO THE ELEMENT [J].
MINAKAMI, R ;
KUROSE, K ;
ETOH, K ;
FURUHATA, Y ;
HATTORI, M ;
SAKAKI, Y .
NUCLEIC ACIDS RESEARCH, 1992, 20 (12) :3139-3145
[35]   High frequency retrotransposition in cultured mammalian cells [J].
Moran, JV ;
Holmes, SE ;
Naas, TP ;
DeBerardinis, RJ ;
Boeke, JD ;
Kazazian, HH .
CELL, 1996, 87 (05) :917-927
[36]  
MUCKENFUSS H, 2006, J BIOL CHEM
[37]   Complementary function of the two catalytic domains of APOBEC3G [J].
Navarro, F ;
Bollman, B ;
Chen, H ;
König, R ;
Yu, Q ;
Chiles, K ;
Landau, NR .
VIROLOGY, 2005, 333 (02) :374-386
[38]   Antiviral function of APOBEC3G can be dissociated from cytidine deaminase activity [J].
Newman, ENC ;
Holmes, RK ;
Craig, HM ;
Klein, KC ;
Lingappa, JR ;
Malim, MH ;
Sheehy, AM .
CURRENT BIOLOGY, 2005, 15 (02) :166-170
[39]   Many human L1 elements are capable of retrotransposition [J].
Sassaman, DM ;
Dombroski, BA ;
Moran, JV ;
Kimberland, ML ;
Naas, TP ;
DeBerardinis, RJ ;
Gabriel, A ;
Swergold, GD ;
Kazazian, HH .
NATURE GENETICS, 1997, 16 (01) :37-43
[40]   Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G [J].
Sawyer, SL ;
Emerman, M ;
Malik, HS .
PLOS BIOLOGY, 2004, 2 (09) :1278-1285