Upper semicontinuity of attractors and synchronization

被引:50
作者
Carvalho, AN
Rodrigues, HM
Dlotko, T
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil
[2] Silesian Univ, Inst Math, PL-40007 Katowice, Poland
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1006/jmaa.1997.5774
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that diffusively coupled abstract semilinear parabolic systems synchronize. We apply the abstract results obtained to a class of ordinary differential equations and to reaction diffusion problems. The technique consists of proving that the attractors for the coupled differential equations are upper semicontinuous with respect to the attractor of a limiting problem, explicitly exhibited, in the diagonal. (C) 1998 Academic Press.
引用
收藏
页码:13 / 41
页数:29
相关论文
共 28 条
[1]  
AFRAIMOVICH VS, 1986, IZV VUZ RADIOFIZ+, V29, P1050
[2]  
AFRAIMOVICH VS, 1986, SOV RADIOPHYS, V29, P795
[3]  
AFRAIMOVICH VS, 1994, CDSNS94202 GEORG I T
[4]   RIDDLED BASINS [J].
Alexander, J. C. ;
Yorke, James A. ;
You, Zhiping ;
Kan, I. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04) :795-813
[5]  
Anishchenko V. S., 1992, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, V2, P633, DOI 10.1142/S0218127492000756
[6]   SYNCHRONIZING CHAOTIC CIRCUITS [J].
CARROLL, TL ;
PECORA, LM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04) :453-456
[7]   DELAY-PARTIAL DIFFERENTIAL-EQUATIONS WITH SOME LARGE DIFFUSION [J].
CARVALHO, AN ;
OLIVEIRA, LAF .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 22 (09) :1057-1095
[8]   Contracting sets and dissipation [J].
Carvalho, AN .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1995, 125 :1305-1329
[9]  
CARVALHO AN, 1997, HOKKAIDO MATH J, V26, P1
[10]  
Chua L. O., 1993, Journal of Circuits, Systems and Computers, V3, P93, DOI 10.1142/S0218126693000071