HIV Tat peptide enhances cellular delivery of antisense morpholino oligomers

被引:85
作者
Moulton, HM [1 ]
Hase, MC [1 ]
Smith, KM [1 ]
Iversen, PL [1 ]
机构
[1] AVI Bio Pharma Inc, Corvallis, OR 97333 USA
来源
ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT | 2003年 / 13卷 / 01期
关键词
D O I
10.1089/108729003764097322
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Phosphorodiamidate morpholino oligomers (PMO) are uncharged antisense molecules that bind complementary sequences of RNA, inhibiting gene expression by preventing translation or by interfering with pre-mRNA splicing. The techniques used to deliver PMO into cultured cells have been mostly mechanical methods. These delivery methods, although useful, have limitations. We investigated the ability of the HIV Tat peptide (pTat) and other cationic peptides to deliver PMO into cultured cells. Fluorescence was seen in 100% of HeLa cells treated with pTat-PMO-fluorescein conjugate. pTat-PMO conjugate targeted to c-myc mRNA downregulated c-myc reporter gene expression with an IC50 of 25 muM and achieved nearly 100% inhibition. pTat-PMO conjugate targeted to a mutant splice site of beta-globin pre-mRNA dose-dependently corrected splicing and upregulated expression of the functional reporter gene. Neither unconjugated PMO nor unconjugated pTat caused antisense activities. However, compared with mechanically mediated delivery, pTat-mediated PMO delivery required higher concentrations of PMO (>10 muM) to cause antisense activity and caused some toxicity. Most pTat-PMO conjugate was associated with cell membranes, and internalized conjugate was localized in vesicles, cytosol, and nucleus. The other three cationic peptides are much less effective than pTat. pTat significantly enhances delivery of PMO in 100% of cells assayed. pTat-mediated delivery is a much simpler procedure to perform than other delivery methods.
引用
收藏
页码:31 / 43
页数:13
相关论文
共 44 条
[1]  
ARORA V, 2002, TOXICOL SCI, V66, P26
[2]   Antisense inhibition of P-glycoprotein expression using peptide-oligonucleotide conjugates [J].
Astriab-Fisher, A ;
Sergueev, DS ;
Fisher, M ;
Shaw, BR ;
Juliano, RL .
BIOCHEMICAL PHARMACOLOGY, 2000, 60 (01) :83-90
[3]   Conjugates of antisense oligonucleotides with the Tat and antennapedia cell-penetrating peptides: Effects on cellular uptake, binding to target sequences, and biologic actions [J].
Astriab-Fisher, A ;
Sergueev, D ;
Fisher, M ;
Shaw, BR ;
Juliano, RL .
PHARMACEUTICAL RESEARCH, 2002, 19 (06) :744-754
[4]  
BEHRINGER R, 2001, GENESIS, V30
[5]   In vivo nuclear delivery of oligonucleotides via hybridizing bifunctional peptides [J].
Brandén, LJ ;
Christensson, B ;
Smith, CIE .
GENE THERAPY, 2001, 8 (01) :84-87
[6]   Rho-A is critical for osteoclast podosome organization, motility, and bone resorption [J].
Chellaiah, MA ;
Soga, N ;
Swanson, S ;
McAllister, S ;
Alvarez, U ;
Wang, DM ;
Dowdy, SF ;
Hruska, KA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (16) :11993-12002
[7]   Molecular transporters for peptides:: delivery of a cardioprotective εPKC agonist peptide into cells and intact ischemic heart using a transport system, R7 [J].
Chen, L ;
Wright, LR ;
Chen, CH ;
Oliver, SF ;
Wender, PA ;
Mochly-Rosen, D .
CHEMISTRY & BIOLOGY, 2001, 8 (12) :1123-1129
[8]  
DEROSSI D, 1994, J BIOL CHEM, V269, P10444
[9]   Cell permeabilization and uptake of antisense peptide-peptide nucleic acid (PNA) into Escherichia coli [J].
Eriksson, M ;
Nielsen, PE ;
Good, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (09) :7144-7147
[10]   TAT-MEDIATED DELIVERY OF HETEROLOGOUS PROTEINS INTO CELLS [J].
FAWELL, S ;
SEERY, J ;
DAIKH, Y ;
MOORE, C ;
CHEN, LL ;
PEPINSKY, B ;
BARSOUM, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (02) :664-668