Numerical solution of fractional order differential equations by extrapolation

被引:140
作者
Diethelm, K
Walz, G
机构
[1] Univ Hildesheim, Math Inst, D-31141 Hildesheim, Germany
[2] Univ Mannheim, Dept Math & Comp Sci, D-68131 Mannheim, Germany
关键词
fractional order derivative; fractional order differential equation; quadrature; extrapolation; asymptotic expansion; trapezoidal formula;
D O I
10.1023/A:1019147432240
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an extrapolation type algorithm for the numerical solution of fractional order differential equations. It is based on the new result that the sequence of approximate solutions of these equations, computed by means of a recently published algorithm by Diethelm [6], possesses an asymptotic expansion with respect to the stepsize. From this we conclude that the application of extrapolation is justified, and we obtain a very efficient differential equation solver with practically no additional numerical costs. This is also illustrated by a number of numerical examples.
引用
收藏
页码:231 / 253
页数:23
相关论文
共 21 条
[1]  
Brass H., 1977, Quadraturverfahren
[2]   A GENERAL EXTRAPOLATION ALGORITHM [J].
BREZINSKI, C .
NUMERISCHE MATHEMATIK, 1980, 35 (02) :175-187
[3]  
BREZINSKI C, 1992, EXTRAPOLATION METHOD
[4]  
Brunner H., 1986, The Numerical Solution of Volterra Equations
[5]  
DE HOOG F, 1973, MATH COMPUT, V27, P295, DOI 10.1090/S0025-5718-1973-0329207-0
[6]   Generalized compound quadrature formulae for finite-part integrals [J].
Diethelm, K .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1997, 17 (03) :479-493
[7]  
Diethelm K., 1997, ELECTRON T NUMER ANA, V5, P1
[8]   AN ASYMPTOTIC ANALYSIS OF 2 ALGORITHMS FOR CERTAIN HADAMARD FINITE-PART INTEGRALS [J].
ELLIOTT, D .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1993, 13 (03) :445-462
[9]  
Gragg W.B., 1965, SIAM J. Numer. Anal., V2, P384, DOI 10.1137/0702030
[10]  
GRAGG WB, 1964, THESIS U CALIFORNIA