AN ASYMPTOTIC ANALYSIS OF 2 ALGORITHMS FOR CERTAIN HADAMARD FINITE-PART INTEGRALS

被引:38
作者
ELLIOTT, D
机构
[1] Department of Mathematics, University of Tasmania, Hobart, TAS, 7001
基金
澳大利亚研究理事会;
关键词
D O I
10.1093/imanum/13.3.445
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two algorithms for the approximate evaluation of certain Hadamard finite-part integrals, which date back to Grunwald (1867), have been analysed. It is shown that the quadrature sums are closely related to the finite-part integrals of the Bernstein polynomials. The stability of the algorithms is considered and two numerical examples are given.
引用
收藏
页码:445 / 462
页数:18
相关论文
共 18 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[2]   A SINC QUADRATURE RULE FOR HADAMARD FINITE-PART INTEGRALS [J].
BIALECKI, B .
NUMERISCHE MATHEMATIK, 1990, 57 (03) :263-269
[3]  
GRUNWALD KA, 1867, Z MATH PHYS, V12, P441
[4]  
HADAMARD J, 1952, LECTURES CAUCHYS PRO
[6]  
IOAKIMIDIS NI, 1985, MATH COMPUT, V44, P191, DOI 10.1090/S0025-5718-1985-0771040-8
[7]   ON THE SOLUTION OF INTEGRAL-EQUATIONS WITH STRONGLY SINGULAR KERNELS [J].
KAYA, AC ;
ERDOGAN, F .
QUARTERLY OF APPLIED MATHEMATICS, 1987, 45 (01) :105-122
[8]   NUMERICAL EVALUATION OF PRINCIPAL VALUE INTEGRALS BY FINITE-PART INTEGRATION [J].
KUTT, HR .
NUMERISCHE MATHEMATIK, 1975, 24 (03) :205-210
[9]  
KUTT HR, 1975, CSIR WISK178 NAT RES
[10]   ON THE APPROXIMATE COMPUTATION OF CERTAIN STRONGLY SINGULAR-INTEGRALS [J].
LINZ, P .
COMPUTING, 1985, 35 (3-4) :345-353