Cunningham MF, Docherty NG, Burke JP, O'Connell PR. S100A4 expression is increased in stricture fibroblasts from patients with fibrostenosing Crohn's disease and promotes intestinal fibroblast migration. Am J Physiol Gastrointest Liver Physiol 299: G457-G466, 2010. First published May 20, 2010; doi: 10.1152/ajpgi.00351.2009.-Fibroblasts represent the key cell type in fibrostenosing Crohn's disease (FCD) pathogenesis. S100A4 is an EF-hand calcium-binding protein family member, implicated in epithelial-mesenchymal transition and as a marker of activated T lymphocytes and fibroblasts in chronic tissue remodeling. The aim of this study was to examine the expression profile of S100A4 in the resected ileum of patients with FCD. Mucosa, seromuscular explants, and transmural biopsies were harvested from diseased and proximal, macroscopically normal margins of ileocecal resections from patients with FCD. Samples were processed for histochemistry, immunohistochemistry, real-time RTPCR, Western blotting, and transmission electron microscopy. Primary explant cultures of seromuscular fibroblasts were exposed to transforming growth factor (TGF)-beta 1 (1 ng/ml), and S100A4 expression and scratch wound-healing activity were assessed at 24 h. CCD-18Co fibroblasts were transfected with S100A4 small interfering RNA, treated with TGF-beta 1 (1 ng/ml) for 30 min or 24 h, and then assessed for S100A4 and Smad3 expression and scratch woundhealing activity. S100A4 expression was increased in stricture mucosa, in the lamina propria, and in CD3-positive intraepithelial CD3-positive T lymphocytes. Fibroblastic S100A4 staining was observed in seromuscular scar tissue. Stricture fibroblast explant culture showed significant upregulation of S100A4 expression. TGF-beta 1 increased S100A4 expression in cultured ileal fibroblasts. In CCD-18Co fibroblasts, S100A4 small interfering RNA inhibited scratch wound healing and modestly inhibited Smad3 activation. S100A4 expression is increased in fibroblasts, as well as immune cells, in Crohn's disease stricture and induced by TGF-beta 1. Results from knockdown experiments indicate a potential role for S100A4 in mediating intestinal fibroblast migration.