Telomere repeat binding factors: keeping the ends in check

被引:59
作者
Karlseder, J [1 ]
机构
[1] Salk Inst Biol Studies, La Jolla, CA 92037 USA
关键词
telomerase; telomere; TRF2; telomere repeat factor; end protection; checkpoint; DNA damage; senescence; immortalization; cell cycle; telomere capping; T loop;
D O I
10.1016/S0304-3835(02)00706-1
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Per definition, a linear chromosome contains two ends, two sites, which by analogy to double-stranded breaks, might be expected to induce cell cycle checkpoints. The fact that cells divide without inducing such checkpoints suggests that telomeres, the natural ends of linear chromosomes, have the ability to suppress checkpoint activation. This suppression takes place at a number of levels. The TTAGGG repeats of human telomeric DNA recruit telomere specific proteins, among them the telomere repeat binding factors TRF1 and TRF2. These proteins, along with their interaction partners, reorganize the linear chromosome end into a t loop, a protected structure, which hides the very end of the chromosome. Here it is discussed how mammalian telomeres differ from DNA breaks, and what methods they use to prevent checkpoint activation. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
引用
收藏
页码:189 / 197
页数:9
相关论文
共 48 条
[1]   Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice [J].
Artandi, SE ;
Chang, S ;
Lee, SL ;
Alson, S ;
Gottlieb, GJ ;
Chin, L ;
DePinho, RA .
NATURE, 2000, 406 (6796) :641-645
[2]   DNA double-strand break repair proteins are required to cap the ends of mammalian chromosomes [J].
Bailey, SM ;
Meyne, J ;
Chen, DJ ;
Kurimasa, A ;
Li, GC ;
Lehnert, BE ;
Goodwin, EH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (26) :14899-14904
[3]   Strand-specific postreplicative processing of mammalian telomeres [J].
Bailey, SM ;
Cornforth, MN ;
Kurimasa, A ;
Chen, DJ ;
Goodwin, EH .
SCIENCE, 2001, 293 (5539) :2462-2465
[4]   Pot1, the putative telomere end-binding protein in fission yeast and humans [J].
Baumann, P ;
Cech, TR .
SCIENCE, 2001, 292 (5519) :1171-1175
[5]   Ku binds telomeric DNA in vitro [J].
Bianchi, A ;
de Lange, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (30) :21223-21227
[6]   Telomeric localization of TRF2, a novel human telobox protein [J].
Bilaud, T ;
Brun, C ;
Ancelin, K ;
Koering, CE ;
Laroche, T ;
Gilson, E .
NATURE GENETICS, 1997, 17 (02) :236-239
[7]   The telobox, a Myb-related telomeric DNA binding motif found in proteins from yeast, plants and human [J].
Bilaud, T ;
Koering, CE ;
BinetBrasselet, E ;
Ancelin, K ;
Pollice, A ;
Gasser, SM ;
Gilson, E .
NUCLEIC ACIDS RESEARCH, 1996, 24 (07) :1294-1303
[8]   Telomere shortening and tumor formation by mouse cells lacking telomerase RNA [J].
Blasco, MA ;
Lee, HW ;
Hande, MP ;
Samper, E ;
Lansdorp, PM ;
DePinho, RA ;
Greider, CW .
CELL, 1997, 91 (01) :25-34
[9]   Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2 [J].
Broccoli, D ;
Smogorzewska, A ;
Chong, L ;
deLange, T .
NATURE GENETICS, 1997, 17 (02) :231-235
[10]   New ways not to make ends meet: telomerase, DNA damage proteins and heterochromatin [J].
Chan, SWL ;
Blackburn, EH .
ONCOGENE, 2002, 21 (04) :553-563