Telomere repeat binding factors: keeping the ends in check

被引:59
作者
Karlseder, J [1 ]
机构
[1] Salk Inst Biol Studies, La Jolla, CA 92037 USA
关键词
telomerase; telomere; TRF2; telomere repeat factor; end protection; checkpoint; DNA damage; senescence; immortalization; cell cycle; telomere capping; T loop;
D O I
10.1016/S0304-3835(02)00706-1
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Per definition, a linear chromosome contains two ends, two sites, which by analogy to double-stranded breaks, might be expected to induce cell cycle checkpoints. The fact that cells divide without inducing such checkpoints suggests that telomeres, the natural ends of linear chromosomes, have the ability to suppress checkpoint activation. This suppression takes place at a number of levels. The TTAGGG repeats of human telomeric DNA recruit telomere specific proteins, among them the telomere repeat binding factors TRF1 and TRF2. These proteins, along with their interaction partners, reorganize the linear chromosome end into a t loop, a protected structure, which hides the very end of the chromosome. Here it is discussed how mammalian telomeres differ from DNA breaks, and what methods they use to prevent checkpoint activation. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
引用
收藏
页码:189 / 197
页数:9
相关论文
共 48 条
[31]   Longevity, stress response, and cancer in aging telomerase-deficient mice [J].
Rudolph, KL ;
Chang, S ;
Lee, HW ;
Blasco, M ;
Gottlieb, GJ ;
Greider, C ;
DePinho, RA .
CELL, 1999, 96 (05) :701-712
[32]   Telomere dysfunction and evolution of intestinal carcinoma in mice and humans [J].
Rudolph, KL ;
Millard, M ;
Bosenberg, MW ;
DePinho, RA .
NATURE GENETICS, 2001, 28 (02) :155-159
[33]   Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-strand overhang [J].
Samper, E ;
Goytisolo, FA ;
Slijepcevic, P ;
van Buul, PPW ;
Blasco, MA .
EMBO REPORTS, 2000, 1 (03) :244-252
[34]   Restoration of telomerase activity rescues chromosomal instability and premature aging in Terc-/- mice with short telomeres [J].
Samper, E ;
Flores, JA ;
Blasco, MA .
EMBO REPORTS, 2001, 2 (09) :800-807
[35]   Normal telomere length and chromosomal end capping in poly(ADP-ribose) polymerase-deficient mice and primary cells despite increased chromosomal instability [J].
Samper, E ;
Goytisolo, FA ;
Ménissier-de Murcia, J ;
González-Suárez, E ;
Cigudosa, JC ;
de Murcia, G ;
Blasco, MA .
JOURNAL OF CELL BIOLOGY, 2001, 154 (01) :49-60
[36]   Telomere shortening triggers a p53-dependent cell cycle arrest via accumulation of G-rich single stranded DNA fragments [J].
Saretzki, G ;
Sitte, N ;
Merkel, U ;
Wurm, RE ;
von Zglinicki, T .
ONCOGENE, 1999, 18 (37) :5148-5158
[37]   Tankyrase, a poly(ADP-ribose) polymerase at human telomeres [J].
Smith, S ;
Giriat, I ;
Schmitt, A ;
de Lange, T .
SCIENCE, 1998, 282 (5393) :1484-1487
[38]   DNA ligase IV-dependent NHEJ of deprotected mammalian telomeres in G1 and G2 [J].
Smogorzewska, A ;
Karlseder, J ;
Holtgreve-Grez, H ;
Jauch, A ;
de Lange, T .
CURRENT BIOLOGY, 2002, 12 (19) :1635-1644
[39]   Different telomere damage signaling pathways in human and mouse cells [J].
Smogorzewska, A ;
de Lange, T .
EMBO JOURNAL, 2002, 21 (16) :4338-4348
[40]   Interaction of human Ku70 with TRF2 [J].
Song, K ;
Jung, D ;
Jung, Y ;
Lee, SG ;
Lee, I .
FEBS LETTERS, 2000, 481 (01) :81-85