Structure of the ubiquitin hydrolase UCH-L3 complexed with a suicide substrate

被引:164
作者
Misaghi, S
Galardy, PJ
Meester, WJN
Ovaa, H
Ploegh, HL
Gaudet, R
机构
[1] Harvard Univ, Sch Med, Dept Pathol, Boston, MA 02115 USA
[2] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA
关键词
D O I
10.1074/jbc.M410770200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ubiquitin C-terminal hydrolases (UCHs) comprise a family of small ubiquitin-specific proteases of uncertain function. Although no cellular substrates have been identified for UCHs, their highly tissue-specific expression patterns and the association of UCH-L1 mutations with human disease strongly suggest a critical role. The structure of the yeast UCH Yuh1-ubiquitin aldehyde complex identified an active site crossover loop predicted to limit the size of suitable substrates. We report the 1.45 resolution crystal structure of human UCH-L3 in complex with the inhibitor ubiquitin vinylmethylester, an inhibitor that forms a covalent adduct with the active site cysteine of ubiquitin-specific proteases. This structure confirms the predicted mechanism of the inhibitor and allows the direct comparison of a UCH family enzyme in the free and ligand-bound state. We also show the efficient hydrolysis by human UCH-L3 of a 13-residue peptide in isopeptide linkage with ubiquitin, consistent with considerable flexibility in UCH substrate size. We propose a model for the catalytic cycle of UCH family members which accounts for the hydrolysis of larger ubiquitin conjugates.
引用
收藏
页码:1512 / 1520
页数:9
相关论文
共 29 条
[11]   Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde [J].
Hu, M ;
Li, PW ;
Li, MY ;
Li, WY ;
Yao, TT ;
Wu, JW ;
Gu, W ;
Cohen, RE ;
Shi, YG .
CELL, 2002, 111 (07) :1041-1054
[12]   Structural basis for the specificity of ubiquitin C-terminal hydrolases [J].
Johnston, SC ;
Riddle, SM ;
Cohen, RE ;
Hill, CP .
EMBO JOURNAL, 1999, 18 (14) :3877-3887
[13]   Crystal structure of a deubiquitinating enzyme (human UCH-L3) at 1.8 angstrom resolution [J].
Johnston, SC ;
Larsen, CN ;
Cook, WJ ;
Wilkinson, KD ;
Hill, CP .
EMBO JOURNAL, 1997, 16 (13) :3787-3796
[14]   IMPROVED METHODS FOR BUILDING PROTEIN MODELS IN ELECTRON-DENSITY MAPS AND THE LOCATION OF ERRORS IN THESE MODELS [J].
JONES, TA ;
ZOU, JY ;
COWAN, SW ;
KJELDGAARD, M .
ACTA CRYSTALLOGRAPHICA SECTION A, 1991, 47 :110-119
[15]   Substrate binding and catalysis by ubiquitin C-terminal hydrolases: Identification of two active site residues [J].
Larsen, CN ;
Price, JS ;
Wilkinson, KD .
BIOCHEMISTRY, 1996, 35 (21) :6735-6744
[16]   Substrate specificity of deubiquitinating enzymes: Ubiquitin C-terminal hydrolases [J].
Larsen, CN ;
Krantz, BA ;
Wilkinson, KD .
BIOCHEMISTRY, 1998, 37 (10) :3358-3368
[17]   Chemically synthesized ubiquitin extension proteins detect distinct catalytic capacities of deubiquitinating enzymes [J].
Layfield, R ;
Franklin, K ;
Landon, M ;
Walker, G ;
Wang, P ;
Ramage, R ;
Brown, A ;
Love, S ;
Urquhart, K ;
Muir, T ;
Baker, R ;
Mayer, RJ .
ANALYTICAL BIOCHEMISTRY, 1999, 274 (01) :40-49
[18]   Substrate profiling of deubiquitin hydrolases with a positional scanning library and mass spectrometry [J].
Mason, DE ;
Ek, J ;
Peters, EC ;
Harris, JL .
BIOCHEMISTRY, 2004, 43 (21) :6535-6544
[19]   Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron [J].
Osaka, H ;
Wang, YL ;
Takada, K ;
Takizawa, S ;
Setsuie, R ;
Li, H ;
Sato, Y ;
Nishikawa, K ;
Sun, YJ ;
Sakurai, M ;
Harada, T ;
Hara, Y ;
Kimura, I ;
Chiba, S ;
Namikawa, K ;
Kiyama, H ;
Noda, M ;
Aoki, S ;
Wada, K .
HUMAN MOLECULAR GENETICS, 2003, 12 (16) :1945-1958
[20]   Activity-based ubiquitin-specific protease (USP) profiling of virus-infected and malignant human cells [J].
Ovaa, H ;
Kessler, BM ;
Rolén, U ;
Galardy, PJ ;
Ploegh, HL ;
Masucci, MG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (08) :2253-2258