Elicitation of suspension-cultured tomato cells triggers the formation of phosphatidic acid and diacylglycerol pyrophosphate

被引:175
作者
van der Luit, AH
Piatti, T
van Doorn, A
Musgrave, A
Felix, G
Boller, T
Munnik, T
机构
[1] Univ Amsterdam, Dept Plant Physiol, Swammerdam Inst Life Sci, NL-1098 SM Amsterdam, Netherlands
[2] Friedrich Miescher Inst, CH-4002 Basel, Switzerland
关键词
D O I
10.1104/pp.123.4.1507
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Phosphatidic acid (PA) and its phosphorylated derivative diacylglycerol pyrophosphate (DGPP) are lipid molecules that have been implicated in plant cell signaling. In this study we report the rapid but transient accumulation of PA and DGPP in suspension-cultured tomato (Lycopersicon esculentum) cells treated with the general elicitors, N,N',N ",N'''-tetraacetylchitotetraose, xylanase, and the flagellin-derived peptide flg22. To determine whether PA originated from the activation of phospholipase D or from the phosphorylation of diacylglycerol (DAG) by DAG kinase, a strategy involving differential radiolabeling with [P-32]orthophosphate was used. DAG kinase was found to be the dominant producer of PA that was subsequently metabolized to DGPP. A minor but significant role for phospholipase D could only be detected when xylanase was used as elicitor. Since Ph formation was correlated with the high turnover of polyphosphoinositides, we hypothesize that elicitor treatment activates phospholipase C to produce DAG, which in turn acts as substrate for DAG kinase. The potential roles of PA and DGPP in plant defense signaling are discussed.
引用
收藏
页码:1507 / 1515
页数:9
相关论文
共 62 条
[1]   CONSEQUENCE OF O2(-) GENERATION DURING A BACTERIALLY INDUCED HYPERSENSITIVE REACTION IN TOBACCO - DETERIORATION OF MEMBRANE-LIPIDS [J].
ADAM, A ;
FARKAS, T ;
SOMLYA, G ;
HEVESI, M ;
KIRALY, Z .
PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, 1989, 34 (01) :13-26
[2]   Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity [J].
Alvarez, ME ;
Pennell, RI ;
Meijer, PJ ;
Ishikawa, A ;
Dixon, RA ;
Lamb, C .
CELL, 1998, 92 (06) :773-784
[3]   Proinflammatory macrophage-activating properties of the novel phospholipid diacylglycerol pyrophosphate [J].
Balboa, MA ;
Balsinde, J ;
Dillon, DA ;
Carman, GM ;
Dennis, EA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (01) :522-526
[4]   Early signal transduction pathways in plant-pathogen interactions [J].
Blumwald, E ;
Aharon, GS ;
Lam, BCH .
TRENDS IN PLANT SCIENCE, 1998, 3 (09) :342-346
[5]   Role of active oxygen species and NO in plant defence responses [J].
Bolwell, GP .
CURRENT OPINION IN PLANT BIOLOGY, 1999, 2 (04) :287-294
[6]   Activation of phospholipase a by plant defense elicitors [J].
Chandra, S ;
Heinstein, PF ;
Low, PS .
PLANT PHYSIOLOGY, 1996, 110 (03) :979-986
[7]   Phospholipase activity during plant growth and development and in response to environmental stress [J].
Chapman, KD .
TRENDS IN PLANT SCIENCE, 1998, 3 (11) :419-426
[8]   Synaptojanin inhibition of phospholipase D activity by hydrolysis of phosphatidylinositol 4,5-bisphosphate [J].
Chung, JK ;
Sekiya, F ;
Kang, HS ;
Lee, CH ;
Han, JS ;
Kim, SR ;
Bae, YS ;
Morris, AJ ;
Rhee, SG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (25) :15980-15985
[9]   OLIGOSACCHARINS - STRUCTURES AND SIGNAL-TRANSDUCTION [J].
COTE, F ;
HAHN, MG .
PLANT MOLECULAR BIOLOGY, 1994, 26 (05) :1379-1411
[10]   Characterisation of a plant 3-phosphoinositide-dependent protein kinase-1 homologue which contains a pleckstrin homology domain [J].
Deak, M ;
Casamayor, A ;
Currie, RA ;
Downes, CP ;
Alessi, DR .
FEBS LETTERS, 1999, 451 (03) :220-226