The basic helix-loop-helix transcription factor family in plants: A genome-wide study of protein structure and functional diversity

被引:845
作者
Heim, MA [1 ]
Jakoby, M
Werber, M
Martin, C
Weisshaar, B
Bailey, PC
机构
[1] Max Planck Inst Plant Breeding Res, Cologne, Germany
[2] John Innes Ctr Plant Sci Res, Dept Cell & Dev Biol, Norwich NR4 7UH, Norfolk, England
关键词
bHLH; Arabidopsis thaliana; transcription control; genomics;
D O I
10.1093/molbev/msg088
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Basic helix-loop-helix (bHLH) transcription factors (TFs) belong to a family of transcriptional regulators present in three eukaryotic kingdoms. Many different functions have been identified for these proteins in animals, including the control of cell proliferation and development of specific cell lineages. Their mechanism for controlling gene transcription often involves homodimerization or heterodimerization. In plants, little is known about the bHLH family, but we have determined that there are 133 bHLH genes in Arabidopsis thaliana and have confirmed that at least 113 of them are expressed. The AtbHLH genes constitute one of the largest families of transcription factors in A. thaliana with significantly more members than are found in most animal species and about an equivalent number to those in vertebrates. Comparisons with animal sequences suggest that the majority of plant bHLH genes have evolved from the ancestral group B class of bHLH genes. By studying the AtbHLH genes collectively, twelve subfamilies have been identified. Within each of these main groups, there are conserved amino acid sequence motifs outside the DNA binding domain. Potential gene redundancy among members of smaller subgroups has been analyzed, and the resulting information is presented to provide a simplified visual interpretation of the gene family, identifying related genes that are likely to share similar functions. Based on the current characterization of a limited number of plant bHLH proteins, we predict that this family of TFs has a range of different roles in plant cell and tissue development as well as plant metabolism.
引用
收藏
页码:735 / 747
页数:13
相关论文
共 84 条
  • [1] Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression
    Abe, H
    YamaguchiShinozaki, K
    Urao, T
    Iwasaki, T
    Hosokawa, D
    Shinozaki, K
    [J]. PLANT CELL, 1997, 9 (10) : 1859 - 1868
  • [2] Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
    Altschul, SF
    Madden, TL
    Schaffer, AA
    Zhang, JH
    Zhang, Z
    Miller, W
    Lipman, DJ
    [J]. NUCLEIC ACIDS RESEARCH, 1997, 25 (17) : 3389 - 3402
  • [3] Alvarez J, 1999, DEVELOPMENT, V126, P2377
  • [4] [Anonymous], 2002, Genome Biol
  • [5] Positional dependence, cliques, and predictive motifs in the bHLH protein domain
    Atchley, WR
    Terhalle, W
    Dress, A
    [J]. JOURNAL OF MOLECULAR EVOLUTION, 1999, 48 (05) : 501 - 516
  • [6] A natural classification of the basic helix-loop-helix class of transcription factors
    Atchley, WR
    Fitch, WM
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (10) : 5172 - 5176
  • [7] MADS-box gene diversity in seed plants 300 million years ago
    Becker, A
    Winter, KU
    Meyer, B
    Saedler, H
    Theissen, G
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2000, 17 (10) : 1425 - 1434
  • [8] THE YEAST REGULATORY GENE PHO4 ENCODES A HELIX-LOOP-HELIX MOTIF
    BERBEN, G
    LEGRAIN, M
    GILLIQUET, V
    HILGER, F
    [J]. YEAST, 1990, 6 (05) : 451 - 454
  • [9] BERNHARDT C, 2001, 12 INT C AR RES WISC
  • [10] Extensive duplication and reshuffling in the arabidopsis genome
    Blanc, G
    Barakat, A
    Guyot, R
    Cooke, R
    Delseny, I
    [J]. PLANT CELL, 2000, 12 (07) : 1093 - 1101