Neuronal regulation of homeostasis by nutrient sensing

被引:96
作者
Lam, Tony K. T. [1 ,2 ,3 ]
机构
[1] Univ Hlth Network, Toronto Gen Res Inst, Toronto, ON, Canada
[2] Univ Toronto, Dept Physiol, Toronto, ON, Canada
[3] Univ Toronto, Dept Med, Toronto, ON, Canada
基金
加拿大健康研究院;
关键词
HEPATIC GLUCOSE-PRODUCTION; CENTRAL INSULIN ACTION; CHAIN FATTY-ACIDS; FOOD-INTAKE; PROTEIN-KINASE; NERVOUS-SYSTEM; LOCOMOTOR-ACTIVITY; LIPID-METABOLISM; SKELETAL-MUSCLE; GASTRIC BYPASS;
D O I
10.1038/nm0410-392
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In type 2 diabetes and obesity, the homeostatic control of glucose and energy balance is impaired, leading to hyperglycemia and hyperphagia. Recent studies indicate that nutrient-sensing mechanisms in the body activate negative-feedback systems to regulate energy and glucose homeostasis through a neuronal network. Direct metabolic signaling within the intestine activates gut-brain and gut-brain-liver axes to regulate energy and glucose homeostasis, respectively. In parallel, direct metabolism of nutrients within the hypothalamus regulates food intake and blood glucose levels. These findings highlight the importance of the central nervous system in mediating the ability of nutrient sensing to maintain homeostasis. Futhermore, they provide a physiological and neuronal framework by which enhancing or restoring nutrient sensing in the intestine and the brain could normalize energy and glucose homeostasis in diabetes and obesity.
引用
收藏
页码:392 / 395
页数:4
相关论文
共 71 条
[1]   Site and mechanism of leptin action in a rodent form of congenital lipodystrophy [J].
Asilmaz, E ;
Cohen, P ;
Miyazaki, M ;
Dobrzyn, P ;
Ueki, K ;
Fayzikhodjaeva, G ;
Soukas, AA ;
Kahn, CR ;
Ntambi, JM ;
Socci, ND ;
Friedman, JM .
JOURNAL OF CLINICAL INVESTIGATION, 2004, 113 (03) :414-424
[2]   The gut and energy balance: Visceral allies in the obesity wars [J].
Badman, MK ;
Flier, JS .
SCIENCE, 2005, 307 (5717) :1909-1914
[3]   Palmitic acid mediates hypothalamic insulin resistance by altering PKC-θ subcellular localization in rodents [J].
Benoit, Stephen C. ;
Kemp, Christopher J. ;
Elias, Carol F. ;
Abplanalp, William ;
Herman, James P. ;
Migrenne, Stephanie ;
Lefevre, Anne-Laure ;
Cruciani-Guglielmacci, Celine ;
Magnan, Christophe ;
Yu, Fang ;
Niswender, Kevin ;
Irani, Boman G. ;
Holland, William L. ;
Clegg, Deborah J. .
JOURNAL OF CLINICAL INVESTIGATION, 2009, 119 (09) :2577-2589
[4]   Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-κB pathway in rat liver [J].
Boden, G ;
She, PX ;
Mozzoli, M ;
Cheung, P ;
Gumireddy, K ;
Reddy, P ;
Xiang, XQ ;
Luo, ZJ ;
Ruderman, N .
DIABETES, 2005, 54 (12) :3458-3465
[5]   Critical role of STAT3 in leptin's metabolic actions [J].
Buettner, Christoph ;
Pocai, Alessandro ;
Muse, Evan D. ;
Etgen, Anne M. ;
Myers, Martin G., Jr. ;
Rossetti, Luciano .
CELL METABOLISM, 2006, 4 (01) :49-60
[6]   A balance of lipid-sensing mechanisms in the brain and liver [J].
Caspi, Liora ;
Wang, Penny Y. T. ;
Lam, Tony K. T. .
CELL METABOLISM, 2007, 6 (02) :99-104
[7]   Central lactate metabolism suppresses food intake via the hypothalamic AMP kinase/malonyl-CoA signaling pathway [J].
Cha, Seung Hun ;
Lane, M. Daniel .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2009, 386 (01) :212-216
[8]   Inactivation of hypothalamic FAS protects mice from diet-induced obesity and inflammation [J].
Chakravarthy, Manu V. ;
Zhu, Yimin ;
Yin, Li ;
Coleman, Trey ;
Pappan, Kirk L. ;
Marshall, Connie A. ;
McDaniel, Michael L. ;
Semenkovich, Clay F. .
JOURNAL OF LIPID RESEARCH, 2009, 50 (04) :630-640
[9]   Activation of central lactate metabolism lowers glucose production in uncontrolled diabetes and diet-induced insulin resistance [J].
Chari, Madhu ;
Lam, Carol K. L. ;
Wang, Penny Y. T. ;
Lam, Tony K. T. .
DIABETES, 2008, 57 (04) :836-840
[10]   Intestinal Cholecystokinin Controls Glucose Production through a Neuronal Network [J].
Cheung, Grace W. C. ;
Kokorovic, Andrea ;
Lam, Carol K. L. ;
Chari, Madhu ;
Lam, Tony K. T. .
CELL METABOLISM, 2009, 10 (02) :99-109