A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation

被引:396
作者
Komatitsch, D [1 ]
Tromp, J [1 ]
机构
[1] CALTECH, Seismol Lab, Pasadena, CA 91125 USA
关键词
absorbing conditions; elastic waves; perfectly matched layer; seismic modelling; seismic wave propagation; surface waves;
D O I
10.1046/j.1365-246X.2003.01950.x
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The perfectly matched layer absorbing boundary condition has proven to be very efficient for the elastic wave equation written as a first-order system in velocity and stress. We demonstrate how to use this condition for the same equation written as a second-order system in displacement. This facilitates use in the context of numerical schemes based upon such a system, e.g. the finite-element method, the spectral-element method and some finite-difference methods. We illustrate the efficiency of this second-order perfectly matched layer based upon 2-D benchmarks with body and surface waves.
引用
收藏
页码:146 / 153
页数:8
相关论文
共 38 条
[21]   ABSORBING BOUNDARY-CONDITIONS FOR ELASTIC-WAVES [J].
HIGDON, RL .
GEOPHYSICS, 1991, 56 (02) :231-241
[22]  
Hughes T. J. R., 2012, The finite element method: linear static and dynamic finite element analysis
[23]  
Komatitsch D, 1998, B SEISMOL SOC AM, V88, P368
[24]   Introduction to the spectral element method for three-dimensional seismic wave propagation [J].
Komatitsch, D ;
Tromp, J .
GEOPHYSICAL JOURNAL INTERNATIONAL, 1999, 139 (03) :806-822
[25]   Spectral-element simulations of global seismic wave propagation - I. Validation [J].
Komatitsch, D ;
Tromp, J .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2002, 149 (02) :390-412
[26]   Perfectly matched anisotropic layer for the numerical analysis of unbounded eddy-current problems [J].
Kosmanis, TI ;
Yioultsis, TV ;
Tsiboukis, TD .
IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (06) :4452-4458
[27]   The perfectly matched layer for acoustic waves in absorptive media [J].
Liu, QH ;
Tao, JP .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1997, 102 (04) :2072-2082
[28]  
MAHRER KD, 1990, B SEISMOL SOC AM, V80, P213
[29]   Efficiency and optimization of the 3-D finite-difference modeling of seismic ground motion [J].
Moczo, P ;
Kristek, J ;
Bystricky, E .
JOURNAL OF COMPUTATIONAL ACOUSTICS, 2001, 9 (02) :593-609
[30]   AN OPTIMAL ABSORBING BOUNDARY-CONDITION FOR ELASTIC-WAVE MODELING [J].
PENG, CB ;
TOKSOZ, MN .
GEOPHYSICS, 1995, 60 (01) :296-301