Cisplatin induces endoplasmic reticulum stress and nucleus-independent apoptotic signaling

被引:415
作者
Mandic, A [1 ]
Hansson, J [1 ]
Linder, S [1 ]
Shoshan, MC [1 ]
机构
[1] Karolinska Hosp & Inst, Dept Pathol & Oncol, Canc Ctr Karolinska, S-17176 Stockholm, Sweden
关键词
D O I
10.1074/jbc.M210284200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
DNA damage is believed to be the main cause of the antiproliferative effect of cisplatin, a cornerstone agent in anticancer therapy. However, cisplatin can be expected to react also with nucleophiles other than DNA. Using enucleated cells (cytoplasts) we demonstrate here that cisplatin-induced apoptotic signaling may occur independently of DNA damage. Cisplatin-induced caspase-3 activation in cytoplasts required calcium and the activity of the calcium-dependent protease calpain. It is known that calpain activation may be associated with endoplasmic reticulum (ER) stress, suggesting that the ER is a cytosolic target of cisplatin. Consistent with this hypothesis, cisplatin induced calpain-dependent activation of the ER-specific caspase-12 in cytoplasts as well as in intact cells. Cisplatin also induced increased expression of Grp78/BiP, another marker of ER stress. By contrast, the DNA-damaging topoisomerase 11 inhibitor etoposide did not induce apoptotic signaling in cytoplasts nor ER stress in intact cells. We have thus identified a novel mechanism of action of cisplatin. The results have implications for the understanding of resistance mechanisms as well as the unique efficiency of this drug.
引用
收藏
页码:9100 / 9106
页数:7
相关论文
共 35 条
[1]   Role of redox potential and reactive oxygen species in stress signaling [J].
Adler, V ;
Yin, ZM ;
Tew, KD ;
Ronai, Z .
ONCOGENE, 1999, 18 (45) :6104-6111
[2]   Enhanced ROS production in oncogenically transformed cells potentiates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activation and sensitization to genotoxic stress [J].
Benhar, M ;
Dalyot, I ;
Engelberg, D ;
Levitzki, A .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (20) :6913-6926
[3]  
Bitko V, 2001, J CELL BIOCHEM, V80, P441, DOI 10.1002/1097-4644(20010301)80:3<441::AID-JCB170>3.0.CO
[4]  
2-C
[5]   Caspases induce cytochrome c release from mitochondria by activating cytosolic factors [J].
Bossy-Wetzel, E ;
Green, DR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (25) :17484-17490
[6]   XIAP inhibition of caspase-3 preserves its association with the Apaf-1 apoptosome and prevents CD95-and Bax-induced apoptosis [J].
Bratton, SB ;
Lewis, J ;
Butterworth, M ;
Duckett, C ;
Cohen, GM .
CELL DEATH AND DIFFERENTIATION, 2002, 9 (09) :881-892
[7]   Requirement for p53 and p21 to sustain G2 arrest after DNA damage [J].
Bunz, F ;
Dutriaux, A ;
Lengauer, C ;
Waldman, T ;
Zhou, S ;
Brown, JP ;
Sedivy, JM ;
Kinzler, KW ;
Vogelstein, B .
SCIENCE, 1998, 282 (5393) :1497-1501
[8]  
Burger H, 1997, INT J CANCER, V73, P592, DOI 10.1002/(SICI)1097-0215(19971114)73:4<592::AID-IJC22>3.3.CO
[9]  
2-7
[10]  
DIJT FJ, 1988, CANCER RES, V48, P6058