Collapse of 4D random geometries

被引:7
作者
Bialas, P
Burda, Z
机构
[1] Jagiellonian Univ, Inst Comp Sci, PL-30072 Krakow, Poland
[2] Jagiellonian Univ, Inst Phys, PL-30059 Krakow, Poland
关键词
D O I
10.1016/S0370-2693(97)01336-1
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We extend the analysis of the Backgammon model to an ensemble with a fixed number of balls and a fluctuating number of boxes. In this ensemble the model exhibits a first order phase transition analogous to the one in higher dimensional simplicial gravity. The transition relies on a kinematic condensation and reflects a crisis of the integration measure which is probably a part of the more general problem with the measure for functional integration over higher (d > 2) dimensional Riemannian structures. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:281 / 285
页数:5
相关论文
共 17 条
[1]   SCALING IN 4-DIMENSIONAL QUANTUM-GRAVITY [J].
AMBJORN, J ;
JURKIEWICZ, J .
NUCLEAR PHYSICS B, 1995, 451 (03) :643-676
[2]   Criticality and scaling in 4D quantum gravity [J].
Antoniadis, I ;
Mazur, PO ;
Mottola, E .
PHYSICS LETTERS B, 1997, 394 (1-2) :49-56
[3]   Condensation in the Backgammon model [J].
Bialas, P ;
Burda, Z ;
Johnston, D .
NUCLEAR PHYSICS B, 1997, 493 (03) :505-516
[4]   Focusing on the fixed point of 4D simplicial gravity [J].
Bialas, P ;
Burda, Z ;
Krzywicki, A ;
Petersson, B .
NUCLEAR PHYSICS B, 1996, 472 (1-2) :293-308
[5]   Phase transition in fluctuating branched geometry [J].
Bialas, P ;
Burda, Z .
PHYSICS LETTERS B, 1996, 384 (1-4) :75-80
[6]   Appearance of mother universe and singular vertices in random geometries [J].
Bialas, P ;
Burda, Z ;
Petersson, B ;
Tabaczek, J .
NUCLEAR PHYSICS B, 1997, 495 (03) :463-476
[7]  
CATLERALL S, 1996, NUCL PHYS B, V468, P263
[8]  
CATTERALL S, HEPLAT9709007
[9]   Further evidence that the transition of 4D dynamical triangulation is 1st order [J].
deBakker, BV .
PHYSICS LETTERS B, 1996, 389 (02) :238-242
[10]   DYNAMICAL SOLUTION OF A MODEL WITHOUT ENERGY BARRIERS [J].
FRANZ, S ;
RITORT, F .
EUROPHYSICS LETTERS, 1995, 31 (09) :507-512