Nitric oxide reactivity and mechanisms involved in its biological effects

被引:46
作者
Mateo, AO [1 ]
De Artiñano, MAA [1 ]
机构
[1] Univ Complutense Madrid, Fac Med, Dept Farmacol, E-28040 Madrid, Spain
关键词
nitric oxide; guanylyl cyclase; vasodilation; superoxide anion; tissue injury;
D O I
10.1006/phrs.2000.0701
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Nitric oxide (NO) is implicated in many different biological functions. This is due to its widespread distribution in tissue and to its ability to react with a range of molecules in the organism, of which haemoglobin (Hb), soluble guanylyl cyclase (GC), and superoxide anion are of particular note. In this review we describe the biological pathways of NO and their involvement in its physiological effects and toxicity. This endothelial factor rapidly diffuses into the vascular compartment, and the reaction with the Hb haem group is the main metabolic pathway for endogenous NO. Hb is, therefore, a scavenger for this mediator, which prevents it from reaching the tissue components. NO also reacts with the GC haem group, and this combination is fundamental to its acute vasorelaxing effect. Although molecular oxygen plays a very small part in the oxidization process of NO in biological systems, NO reacts with the superoxide anion to generate peroxynitrite at a rate that is limited only by its diffusion coefficient. This reaction is important in pathological conditions because the peroxynitrite thus formed is a selective oxidant and nitrating agent that interacts with numerous biological molecules, thereby damaging them. In addition, of particular note are the interactions of NO with thiol groups, which may mediate several relevant effects in the organism. NO may also activate endogenous ribosyltransferases, which facilitate the transfer of adenosine diphosphate-ribose groups from nicotine adenine dinucleotide to the G protein amino acid residues. These last two processes may also be involved in the control of arterial tone and more precisely so when chronic NO production takes place. (C) 2000 Academic Press.
引用
收藏
页码:421 / 427
页数:7
相关论文
共 63 条
[1]  
Bartosz G, 1996, ACTA BIOCHIM POL, V43, P645
[2]   SOLUBILITY OF GASES IN LIQUIDS [J].
BATTINO, R ;
CLEVER, HL .
CHEMICAL REVIEWS, 1966, 66 (04) :395-+
[3]  
Beckman JS, 1996, AM J PHYSIOL-CELL PH, V271, pC1424
[4]   FLOW-INDUCED PROSTACYCLIN PRODUCTION IS MEDIATED BY A PERTUSSIS TOXIN-SENSITIVE G-PROTEIN [J].
BERTHIAUME, F ;
FRANGOS, JA .
FEBS LETTERS, 1992, 308 (03) :277-279
[5]   NITRIC-OXIDE DIRECTLY ACTIVATES CALCIUM-DEPENDENT POTASSIUM CHANNELS IN VASCULAR SMOOTH-MUSCLE [J].
BOLOTINA, VM ;
NAJIBI, S ;
PALACINO, JJ ;
PAGANO, PJ ;
COHEN, RA .
NATURE, 1994, 368 (6474) :850-853
[6]  
Bonner F.T., 1996, METHODS NITRIC OXIDE, P3
[7]   Nitric oxide and mitochondrial respiration [J].
Brown, GC .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1999, 1411 (2-3) :351-369
[8]   Nitric oxide inhibition of cytochrome oxidase and mitochondrial respiration: Implications for inflammatory, neurodegenerative and ischaemic pathologies [J].
Brown, GC .
MOLECULAR AND CELLULAR BIOCHEMISTRY, 1997, 174 (1-2) :189-192
[9]  
BRUNE B, 1989, J BIOL CHEM, V264, P8455
[10]   Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport [J].
Cassina, A ;
Radi, R .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1996, 328 (02) :309-316