Fast and accurate view classification of echocardiograms using deep learning

被引:352
作者
Madani, Ali [1 ]
Arnaout, Ramy [2 ]
Mofrad, Mohammad [1 ]
Arnaout, Rima [3 ]
机构
[1] Univ Calif Berkeley, Calif Inst Quantitat Biosci QB3, Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, 208A Stanley Hall,Room 1762, Berkeley, CA 94720 USA
[2] Harvard Med Sch, Beth Israel Deaconess Med Ctr, 330 Brookline Ave,Dana 615, Boston, MA 02215 USA
[3] Univ Calif San Francisco, Cardiovasc Res Inst, 555 Mission Bay Blvd South,Rm 484, San Francisco, CA 94143 USA
来源
NPJ DIGITAL MEDICINE | 2018年 / 1卷
关键词
D O I
10.1038/s41746-017-0013-1
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Echocardiography is essential to cardiology. However, the need for human interpretation has limited echocardiography's full potential for precision medicine. Deep learning is an emerging tool for analyzing images but has not yet been widely applied to echocardiograms, partly due to their complex multi-view format. The essential first step toward comprehensive computer-assisted echocardiographic interpretation is determining whether computers can learn to recognize these views. We trained a convolutional neural network to simultaneously classify 15 standard views (12 video, 3 still), based on labeled still images and videos from 267 transthoracic echocardiograms that captured a range of real-world clinical variation. Our model classified among 12 video views with 97.8% overall test accuracy without overfitting. Even on single low-resolution images, accuracy among 15 views was 91.7% vs. 70.2-84.0% for board-certified echocardiographers. Data visualization experiments showed that the model recognizes similarities among related views and classifies using clinically relevant image features. Our results provide a foundation for artificial intelligence-assisted echocardiographic interpretation.
引用
收藏
页数:8
相关论文
共 17 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]  
[Anonymous], 2017, A survey on deep learning in medical image analysis
[3]  
[Anonymous], 2017, PYTH LANG REF VERS 2
[4]   ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 Appropriate Use Criteria for Echocardiography [J].
Douglas, Pamela S. ;
Garcia, Mario J. ;
Haines, David E. ;
Lai, Wyman W. ;
Manning, Warren J. ;
Patel, Ayan R. ;
Picard, Michael H. ;
Polk, Donna M. ;
Ragosta, Michael ;
Ward, R. Parker ;
Weiner, Rory B. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2011, 57 (09) :1126-1166
[5]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[6]   A fused deep learning architecture for viewpoint classification of echocardiography [J].
Gao, Xiaohong ;
Li, Wei ;
Loomes, Martin ;
Wang, Lianyi .
INFORMATION FUSION, 2017, 36 :103-113
[7]   Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs [J].
Gulshan, Varun ;
Peng, Lily ;
Coram, Marc ;
Stumpe, Martin C. ;
Wu, Derek ;
Narayanaswamy, Arunachalam ;
Venugopalan, Subhashini ;
Widner, Kasumi ;
Madams, Tom ;
Cuadros, Jorge ;
Kim, Ramasamy ;
Raman, Rajiv ;
Nelson, Philip C. ;
Mega, Jessica L. ;
Webster, R. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22) :2402-2410
[8]  
Karpathy A., 2015, Andrej Karpathy blog
[9]   Automatic apical view classification of echocardiograms using a discriminative learning dictionary [J].
Khamis, Hanan ;
Zurakhov, Grigoriy ;
Azar, Vered ;
Raz, Adi ;
Friedman, Zvi ;
Adam, Dan .
MEDICAL IMAGE ANALYSIS, 2017, 36 :15-21
[10]   Fully Automated Versus Standard Tracking of Left Ventricular Ejection Fraction and Longitudinal Strain The FAST-EFs Multicenter Study [J].
Knackstedt, Christian ;
Bekkers, Sebastiaan C. A. M. ;
Schummers, Georg ;
Schreckenberg, Marcus ;
Muraru, Denisa ;
Badano, Luigi P. ;
Franke, Andreas ;
Bavishi, Chirag ;
Omar, Alaa Mabrouk Salem ;
Sengupta, Partho P. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2015, 66 (13) :1456-1466