Distributed quantum dense coding

被引:136
作者
Bruss, D [1 ]
D'Ariano, GM
Lewenstein, M
Macchiavello, C
Sen, A
Sen, U
机构
[1] Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany
[2] Dipartimento Fis A Volta, I-27100 Pavia, Italy
[3] INFM, Unita Pavia, I-27100 Pavia, Italy
关键词
D O I
10.1103/PhysRevLett.93.210501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce the notion of distributed quantum dense coding, i.e., the generalization of quantum dense coding to more than one sender and more than one receiver. We show that global operations (as compared to local operations) of the senders do not increase the information transfer capacity, in the case of a single receiver. For the case of two receivers, using local operations and classical communication, a nontrivial upper bound for the capacity is derived. We propose a general classification scheme of quantum states according to their usefulness for dense coding. In the bipartite case (for any dimensions), bound entanglement is not useful for this task.
引用
收藏
页数:4
相关论文
共 34 条
[1]  
ACIN A, QUANTPH0310054
[2]   Locally accessible information: How much can the parties gain by cooperating? [J].
Badziag, P ;
Horodecki, M ;
Sen, A ;
Sen, U .
PHYSICAL REVIEW LETTERS, 2003, 91 (11)
[3]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[4]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[5]  
Bose S., QUANTPH9810025
[6]  
BOUWMEESTER D, 2000, PHYS QUANTUM INFORMA
[7]   Tomographic quantum cryptography: Equivalence of quantum and classical key distillation [J].
Bruss, D ;
Christandl, M ;
Ekert, A ;
Englert, BG ;
Kaszlikowski, D ;
Macchiavello, C .
PHYSICAL REVIEW LETTERS, 2003, 91 (09)
[8]   Reflections upon separability and distillability [J].
Bruss, D ;
Cirac, JI ;
Horodecki, P ;
Hulpke, F ;
Kraus, B ;
Lewenstein, M ;
Sanpera, A .
JOURNAL OF MODERN OPTICS, 2002, 49 (08) :1399-1418
[9]   Reduction criterion for separability [J].
Cerf, NJ ;
Adami, C ;
Gingrich, RM .
PHYSICAL REVIEW A, 1999, 60 (02) :898-909
[10]   Entanglement as a precondition for secure quantum key distribution -: art. no. 217903 [J].
Curty, M ;
Lewenstein, M ;
Lütkenhaus, N .
PHYSICAL REVIEW LETTERS, 2004, 92 (21) :217903-1