Normal forms of quasiperiodic strings

被引:4
作者
Mouchard, L [1 ]
机构
[1] Univ Rouen, Fac Sci, ABISS ESA 6037, F-76821 Mt St Aignan, France
关键词
regularity; quasiperiodicity; overlap; seed; cover; normal form;
D O I
10.1016/S0304-3975(00)00065-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Here we consider the problem of computing normal forms of quasiperiodic strings. A string x is quasiperiodic if it can be constructed by concatenation and superpositions of one of its proper factor (cover). The notion of quasiperiodicity is a generalization of periodicity in the sense that superpositions as well as concatenations are allowed to define it. It is shown here that given a quasiperiodic string x, there exists a unique factorization of x into roots of its shortest cover and how we can efficiently build such a factorization in linear time. These forms can be used, for example, to test whether or not a string v covers x(k) for some integer k, where v covers x. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:313 / 324
页数:12
相关论文
共 15 条
[1]   EFFICIENT DETECTION OF QUASIPERIODICITIES IN STRINGS [J].
APOSTOLICO, A ;
EHRENFEUCHT, A .
THEORETICAL COMPUTER SCIENCE, 1993, 119 (02) :247-265
[2]   OPTIMAL SUPERPRIMITIVITY TESTING FOR STRINGS [J].
APOSTOLICO, A ;
FARACH, M ;
ILIOPOULOS, CS .
INFORMATION PROCESSING LETTERS, 1991, 39 (01) :17-20
[3]   OPTIMAL OFF-LINE DETECTION OF REPETITIONS IN A STRING [J].
APOSTOLICO, A ;
PREPARATA, FP .
THEORETICAL COMPUTER SCIENCE, 1983, 22 (03) :297-315
[4]  
BENAMRAM A, 1994, 5 ACM SIAM ANN S DIS, P501
[5]  
Berstel J., 1985, Pure Appl. Math., V117
[6]   THE SMALLEST AUTOMATION RECOGNIZING THE SUBWORDS OF A TEXT [J].
BLUMER, A ;
BLUMER, J ;
HAUSSLER, D ;
EHRENFEUCHT, A ;
CHEN, MT ;
SEIFERAS, J .
THEORETICAL COMPUTER SCIENCE, 1985, 40 (01) :31-55
[7]   AN ONLINE STRING SUPERPRIMITIVITY TEST [J].
BRESLAUER, D .
INFORMATION PROCESSING LETTERS, 1992, 44 (06) :345-347
[8]  
BRESLAUER D, 1992, CUCS05392 COMP SCI D
[9]  
Crochemore M., 1994, TEXT ALGORITHMS
[10]  
DUVAL AM, 1998, IN PRESS INT J FOUND