L1 Penalized Estimation in the Cox Proportional Hazards Model

被引:646
作者
Goeman, Jelle J. [1 ]
机构
[1] Leiden Univ, Med Ctr, Dept Med Stat & Bioinformat, Leiden, Netherlands
关键词
Gradient ascent; Lasso; Penalty; Survival; GENE-EXPRESSION DATA; B-CELL LYMPHOMA; LOGISTIC-REGRESSION; BREAST-CANCER; VARIABLE SELECTION; PREDICT SURVIVAL; LASSO; ALGORITHM;
D O I
10.1002/bimj.200900028
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This article presents a novel algorithm that efficiently computes L-1 penalized (lasso) estimates of parameters in high-dimensional models. The lasso has the property that it simultaneously performs variable selection and shrinkage, which makes it very useful for finding interpretable prediction rules in high-dimensional data. The new algorithm is based on a combination of gradient ascent optimization with the Newton-Raphson algorithm. It is described for a general likelihood function and can be applied in generalized linear models and other models with an L-1 penalty. The algorithm is demonstrated in the Cox proportional hazards model, predicting survival of breast cancer patients using gene expression data, and its performance is compared with competing approaches. An R package, penalized, that implements the method, is available on CRAN.
引用
收藏
页码:70 / 84
页数:15
相关论文
共 27 条
[1]  
[Anonymous], 2006, Journal of the Royal Statistical Society, Series B
[2]   Gene-expression profiles predict survival of patients with lung adenocarcinoma [J].
Beer, DG ;
Kardia, SLR ;
Huang, CC ;
Giordano, TJ ;
Levin, AM ;
Misek, DE ;
Lin, L ;
Chen, GA ;
Gharib, TG ;
Thomas, DG ;
Lizyness, ML ;
Kuick, R ;
Hayasaka, S ;
Taylor, JMG ;
Iannettoni, MD ;
Orringer, MB ;
Hanash, S .
NATURE MEDICINE, 2002, 8 (08) :816-824
[3]   Predicting survival from microarray data -: a comparative study [J].
Bovelstad, H. M. ;
Nygard, S. ;
Storvold, H. L. ;
Aldrin, M. ;
Borgan, O. ;
Frigessi, A. ;
Lingjaerde, O. C. .
BIOINFORMATICS, 2007, 23 (16) :2080-2087
[4]   Statistical analysis of sediment toxicity by additive monotone regression splines [J].
De Boer, WJ ;
Den Besten, PJ ;
Ter Braak, CF .
ECOTOXICOLOGY, 2002, 11 (06) :435-450
[5]   Least angle regression - Rejoinder [J].
Efron, B ;
Hastie, T ;
Johnstone, I ;
Tibshirani, R .
ANNALS OF STATISTICS, 2004, 32 (02) :494-499
[6]   Large-scale Bayesian logistic regression for text categorization [J].
Genkin, Alexander ;
Lewis, David D. ;
Madigan, David .
TECHNOMETRICS, 2007, 49 (03) :291-304
[7]   Testing association of a pathway with survival using gene expression data [J].
Goeman, JJ ;
Oosting, J ;
Cleton-Jansen, AM ;
Anninga, JK ;
van Houwelingen, HC .
BIOINFORMATICS, 2005, 21 (09) :1950-1957
[8]   Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data [J].
Gui, J ;
Li, HZ .
BIOINFORMATICS, 2005, 21 (13) :3001-3008
[9]   A fast tracking algorithm for generalized LARS/LASSO [J].
Keerthi, S. Sathiya ;
Shevade, Shirish .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2007, 18 (06) :1826-1830
[10]   Onset of buoyancy-driven convection in the horizontal fluid layer heated from below with time-dependent manner [J].
Kim, MC ;
Chung, TJ ;
Choi, CK .
KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2004, 21 (01) :69-74