Mutation and modeling analysis of the Saccharomyces cerevisiae Swi6 ankyrin repeats

被引:12
作者
Ewaskow, SP
Sidorova, JM
Hendle, J
Emery, JC
Lycan, DE
Zhang, KYJ
Breeden, LL
机构
[1] Fred Hutchinson Canc Res Ctr, Div Basic Sci, Seattle, WA 98109 USA
[2] Lewis & Clark Coll, Dept Biol, Portland, OR 97219 USA
关键词
D O I
10.1021/bi972652e
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Swi4-Swi6 family of transcription factors confers G1/S specific transcription in budding and fission yeast. These proteins contain four ankyrin repeats, which are present in a large number of functionally diverse proteins and have been shown to be important for protein-protein interaction. However, no specific sequence has been identified that is diagnostic of an ankyrin repeat-interacting protein. To determine the function of the ankyrin repeats of Swi6, we generated both random and site-directed mutations within the ankyrin repeat domain of Swi6 and assayed the transcriptional function of these mutant swi6 alleles. We found six single mutations, scattered within the first and the fourth repeats, that generate a temperature-sensitive Swi6 protein, in addition, we found that alanine substitutions for the most conserved residues in each repeat were highly deleterious and also confer temperature sensitivity. Most of these swi6 alleles are able to form ternary complexes with Swi4 and DNA, but these complexes display reduced mobility in band-shift gels, suggesting a dramatic conformational change. We have modeled the ankyrin repeats of Swi6 using the coordinates derived for 53BP2 and find that, despite its low level of sequence conservation, these modeling studies and our mutation data are consistent with Swi6 having a structure very similar to that of 53BP2. Moreover, all but one of our single mutants and all of the site-directed mutants disrupt critical structural features of the predicted folding pattern of these repeats. We conclude that the ankyrin repeats play a major structural role in Swi6. Ankyrin repeats are unlikely to have inherent protein or DNA binding properties. However, they form a characteristic and stable structure with surfaces that may be tailored for many different macromolecular interactions.
引用
收藏
页码:4437 / 4450
页数:14
相关论文
共 48 条
[1]   Structure of the leucine zipper [J].
Alber, Tom .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1992, 2 (02) :205-210
[2]   INTERACTION OF THE YEAST SWI4 AND SWI6 CELL-CYCLE REGULATORY PROTEINS INVITRO [J].
ANDREWS, BJ ;
MOORE, LA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (24) :11852-11856
[3]   MUTATIONAL ANALYSIS OF A DNA-SEQUENCE INVOLVED IN LINKING GENE-EXPRESSION TO THE CELL-CYCLE [J].
ANDREWS, BJ ;
MOORE, L .
BIOCHEMISTRY AND CELL BIOLOGY-BIOCHIMIE ET BIOLOGIE CELLULAIRE, 1992, 70 (10-11) :1073-1080
[4]   THE YEAST SW14 PROTEIN CONTAINS A MOTIF PRESENT IN DEVELOPMENTAL REGULATORS AND IS PART OF A COMPLEX INVOLVED IN CELL-CYCLE-DEPENDENT TRANSCRIPTION [J].
ANDREWS, BJ ;
HERSKOWITZ, I .
NATURE, 1989, 342 (6251) :830-833
[5]   HUNDREDS OF ANKYRIN-LIKE REPEATS IN FUNCTIONALLY DIVERSE PROTEINS - MOBILE MODULES THAT CROSS PHYLA HORIZONTALLY [J].
BORK, P .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1993, 17 (04) :363-374
[6]   THE ONCOPROTEIN BCL-3 DIRECTLY TRANSACTIVATES THROUGH KAPPA-B MOTIFS VIA ASSOCIATION WITH DNA-BINDING P50B HOMODIMERS [J].
BOURS, V ;
FRANZOSO, G ;
AZARENKO, V ;
PARK, S ;
KANNO, T ;
BROWN, K ;
SIEBENLIST, U .
CELL, 1993, 72 (05) :729-739
[7]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[8]   SIMILARITY BETWEEN CELL-CYCLE GENES OF BUDDING YEAST AND FISSION YEAST AND THE NOTCH GENE OF DROSOPHILA [J].
BREEDEN, L ;
NASMYTH, K .
NATURE, 1987, 329 (6140) :651-654
[9]   CELL-CYCLE CONTROL OF THE YEAST HO GENE - CIS-ACTING AND TRANS-ACTING REGULATORS [J].
BREEDEN, L ;
NASMYTH, K .
CELL, 1987, 48 (03) :389-397
[10]   CELL CYCLE-SPECIFIC EXPRESSION OF THE SWI4 TRANSCRIPTION FACTOR IS REQUIRED FOR THE CELL-CYCLE REGULATION OF HO TRANSCRIPTION [J].
BREEDEN, L ;
MIKESELL, GE .
GENES & DEVELOPMENT, 1991, 5 (07) :1183-1190