Synthesis and characterization of ZnO nanorods and nanoflowers grown on GaN-based LED epiwafer using a solution deposition method

被引:85
作者
Gao, Haiyong [1 ]
Yan, Fawang [1 ]
Li, Jinmin [1 ]
Zeng, Yiping [1 ]
Wang, Junxi [1 ]
机构
[1] Chinese Acad Sci, Inst Semicond, Semicond Lighting Technol Res & Dev Ctr, Beijing 100083, Peoples R China
关键词
D O I
10.1088/0022-3727/40/12/015
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report the growth of hexagonal ZnO nanorods and nanoflowers on GaN-based LED epiwafer using a solution deposition method. We also discuss the mechanisms of epitaxial nucleation and of the growth of ZnO nanorods and nanoflowers. A GaN-based LED epiwafer was first deposited on a sapphire substrate by MOCVD with no electrode being fabricated on it. Vertically aligned ZnO nanorods with an average height of similar to 2.4 mu m were then grown on the LED epiwafer, and nanoflowers were synthesized on the nanorods. The growth orientation of the nanorods was perpendicular to the surface, and the synthesized nanoflowers were composed of nanorods. The micro-Raman spectra of the ZnO nanorods and nanoflowers are similar and both exhibit the E-2 (high) mode and the second-order multiple-phonon mode. The photoluminescence spectrum of ZnO nanostructures exhibits ultraviolet emission centred at about 380 nm and a broad and enhanced green emission centred at about 526 nm. The green emission of the ZnO nanostructures combined with the emission of InGaN quantum wells provides a valuable method to improve the colour rendering index (CRI) of LEDs.
引用
收藏
页码:3654 / 3659
页数:6
相关论文
共 32 条
[1]   RESONANT RAMAN-SCATTERING IN ZNO [J].
CALLEJA, JM ;
CARDONA, M .
PHYSICAL REVIEW B, 1977, 16 (08) :3753-3761
[2]   Sputter deposition of ZnO nanorods/thin-film structures on Si [J].
Chen, MT ;
Ting, JM .
THIN SOLID FILMS, 2006, 494 (1-2) :250-254
[3]   Optical properties of ZnO and ZnO:In nanorods assembled by sol-gel method -: art. no. 134701 [J].
Chen, YW ;
Liu, YC ;
Lu, SX ;
Xu, CS ;
Shao, CL ;
Wang, C ;
Zhang, JY ;
Lu, YM ;
Shen, DZ ;
Fan, XW .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (13)
[4]   A facile route to ZnO nanorod arrays using wet chemical method [J].
Chen, Zhitao ;
Gao, Lian .
JOURNAL OF CRYSTAL GROWTH, 2006, 293 (02) :522-527
[5]   Hydrothermal growth of perpendicularly oriented ZnO nanorod array film and its photoelectrochemical properties [J].
Guo, M ;
Diao, P ;
Cai, SM .
APPLIED SURFACE SCIENCE, 2005, 249 (1-4) :71-75
[6]   Properties of GaN and related compounds studied by means of Raman scattering [J].
Harima, H .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (38) :R967-R993
[7]   Site-specific growth of Zno nanorods using catalysis-driven molecular-beam epitaxy [J].
Heo, YW ;
Varadarajan, V ;
Kaufman, M ;
Kim, K ;
Norton, DP ;
Ren, F ;
Fleming, PH .
APPLIED PHYSICS LETTERS, 2002, 81 (16) :3046-3048
[8]   Effects of laser-ablated impurity on aligned ZnO nanorods grown by chemical vapor deposition [J].
Hirate, T ;
Sasaki, S ;
Li, WC ;
Miyashita, H ;
Kimpara, T ;
Satoh, T .
THIN SOLID FILMS, 2005, 487 (1-2) :35-39
[9]   Three-dimensional crystalline SiC nanowire flowers [J].
Ho, GW ;
Wong, ASW ;
Kang, DJ ;
Welland, ME .
NANOTECHNOLOGY, 2004, 15 (08) :996-999
[10]   Room-temperature ultraviolet nanowire nanolasers [J].
Huang, MH ;
Mao, S ;
Feick, H ;
Yan, HQ ;
Wu, YY ;
Kind, H ;
Weber, E ;
Russo, R ;
Yang, PD .
SCIENCE, 2001, 292 (5523) :1897-1899