Regulation of origin recognition complex conformation and ATPase activity: differential effects of single-stranded and double-stranded DNA binding

被引:70
作者
Lee, DG
Makhov, AM
Klemm, RD
Griffith, JD
Bell, SP
机构
[1] MIT, Dept Biol, Cambridge, MA 02139 USA
[2] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA
关键词
ATPase; conformation; electron microscopy; ORC; ssDNA;
D O I
10.1093/emboj/19.17.4774
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Saccharomyces cerevisiae origin recognition complex (ORC) is bound to origins of DNA replication throughout the cell cycle and directs the assembly of higher-order protein-DNA complexes during G(1.) To examine the fate of ORC when origin DNA is unwound during replication initiation, we determined the effect of single-stranded DNA (ssDNA) on ORC. We show that ORC can bind ssDNA and that ORC bound to ssDNA is distinct from that bound to double-stranded origin DNA, ssDNA stimulated ORC ATPase activity, whereas double-stranded origin DNA inhibited the same activity. Electron microscopy studies revealed two alternative conformations of ORC: an extended conformation stabilized by origin DNA and a bent conformation stabilized by ssDNA, Therefore, ORC appears to exist in two distinct states with respect to its conformation and ATPase activity. Interestingly, the effect of ssDNA on these properties of ORC is correlated with ssDNA length. Since double-stranded origin DNA and ssDNA differentially stabilize these two forms of ORC, we propose that origin unwinding triggers a transition between these alternative states.
引用
收藏
页码:4774 / 4782
页数:9
相关论文
共 39 条
[1]   Differential assembly of Cdc45p and DNA polymerases at early and late origins of DNA replication [J].
Aparicio, OM ;
Stout, AM ;
Bell, SP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (16) :9130-9135
[2]   Components and dynamics of DNA replication complexes in S-cerevisiae: Redistribution of MCM proteins and Cdc45p during S phase [J].
Aparicio, OM ;
Weinstein, DM ;
Bell, SP .
CELL, 1997, 91 (01) :59-69
[3]  
Ausubel FM., 1994, Curr. Protoc. Mol. Biol
[4]   Polymerases and the replisome: Machines within machines [J].
Baker, TA ;
Bell, SP .
CELL, 1998, 92 (03) :295-305
[5]   YEAST ORIGIN RECOGNITION COMPLEX FUNCTIONS IN TRANSCRIPTION SILENCING AND DNA-REPLICATION [J].
BELL, SP ;
KOBAYASHI, R ;
STILLMAN, B .
SCIENCE, 1993, 262 (5141) :1844-1849
[6]   THE MULTIDOMAIN STRUCTURE OF ORC1P REVEALS SIMILARITY TO REGULATORS OF DNA-REPLICATION AND TRANSCRIPTIONAL SILENCING [J].
BELL, SP ;
MITCHELL, J ;
LEBER, J ;
KOBAYASHI, R ;
STILLMAN, B .
CELL, 1995, 83 (04) :563-568
[7]   ATP-DEPENDENT RECOGNITION OF EUKARYOTIC ORIGINS OF DNA-REPLICATION BY A MULTIPROTEIN COMPLEX [J].
BELL, SP ;
STILLMAN, B .
NATURE, 1992, 357 (6374) :128-134
[8]   Chromosomal ARS1 has a single leading strand start site [J].
Bielinsky, AK ;
Gerbi, SA .
MOLECULAR CELL, 1999, 3 (04) :477-486
[9]   Herpes simplex virus DNA replication [J].
Boehmer, PE ;
Lehman, IR .
ANNUAL REVIEW OF BIOCHEMISTRY, 1997, 66 :347-384
[10]   BINDING AND UNWINDING - HOW T-ANTIGEN ENGAGES THE SV40 ORIGIN OF DNA-REPLICATION [J].
BOROWIEC, JA ;
DEAN, FB ;
BULLOCK, PA ;
HURWITZ, J .
CELL, 1990, 60 (02) :181-184