A community effort to assess and improve drug sensitivity prediction algorithms

被引:516
作者
Costello, James C. [1 ,2 ]
Heiser, Laura M. [3 ]
Georgii, Elisabeth [4 ]
Gonen, Mehmet [4 ]
Menden, Michael P. [5 ]
Wang, Nicholas J. [3 ]
Bansal, Mukesh [6 ]
Ammad-ud-din, Muhammad [4 ]
Hintsanen, Petteri [7 ]
Khan, Suleiman A. [4 ]
Mpindi, John-Patrick [7 ]
Kallioniemi, Olli [7 ]
Honkela, Antti [8 ]
Aittokallio, Tero [7 ]
Wennerberg, Krister [7 ]
Collins, James J. [1 ,2 ,9 ]
Gallahan, Dan [10 ]
Singer, Dinah [10 ]
Saez-Rodriguez, Julio [5 ]
Kaski, Samuel [4 ,8 ]
Gray, Joe W. [3 ]
Stolovitzky, Gustavo [11 ]
机构
[1] Boston Univ, Howard Hughes Med Inst, Boston, MA 02215 USA
[2] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[3] Oregon Hlth & Sci Univ, Dept Biomed Engn, Portland, OR 97201 USA
[4] Aalto Univ, Helsinki Inst Informat Technol HIIT, Dept Informat & Comp Sci, Espoo, Finland
[5] European Bioinformat Inst, European Mol Biol Lab, Cambridge, England
[6] Columbia Univ, Dept Syst Biol, Ctr Computat Biol & Bioinformat, New York, NY USA
[7] Univ Helsinki, Inst Mol Med Finland FIMM, Helsinki, Finland
[8] Univ Helsinki, Dept Comp Sci, Helsinki Inst Informat Technol HIIT, SF-00510 Helsinki, Finland
[9] Harvard Univ, Wyss Inst Biol Inspired Engn, Boston, MA 02115 USA
[10] NCI, NIH, Bethesda, MD 20892 USA
[11] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
基金
美国国家卫生研究院; 芬兰科学院;
关键词
CANCER CELL-LINES; HUMAN BREAST; GENES; ARRAY; IDENTIFICATION; ENCYCLOPEDIA; SIGNATURES; RESPONSES; RESOURCE; WISDOM;
D O I
10.1038/nbt.2877
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Predicting the best treatment strategy from genomic information is a core goal of precision medicine. Here we focus on predicting drug response based on a cohort of genomic, epigenomic and proteomic profiling data sets measured in human breast cancer cell lines. Through a collaborative effort between the National Cancer Institute (NCI) and the Dialogue on Reverse Engineering Assessment and Methods (DREAM) project, we analyzed a total of 44 drug sensitivity prediction algorithms. The top-performing approaches modeled nonlinear relationships and incorporated biological pathway information. We found that gene expression microarrays consistently provided the best predictive power of the individual profiling data sets; however, performance was increased by including multiple, independent data sets. We discuss the innovations underlying the top-performing methodology, Bayesian multitask MKL, and we provide detailed descriptions of all methods. This study establishes benchmarks for drug sensitivity prediction and identifies approaches that can be leveraged for the development of new methods.
引用
收藏
页码:1202 / U57
页数:13
相关论文
共 49 条
[1]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[2]   A single-array preprocessing method for estimating full-resolution raw copy numbers from all Affymetrix genotyping arrays including GenomeWideSNP 5 & 6 [J].
Bengtsson, Henrik ;
Wirapati, Pratyaksha ;
Speed, Terence P. .
BIOINFORMATICS, 2009, 25 (17) :2149-2156
[3]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[4]   Integrating data on DNA copy number with gene expression levels and drug sensitivities in the NCI-60 cell line panel [J].
Bussey, KJ ;
Chin, K ;
Lababidi, S ;
Reimers, M ;
Reinhold, WC ;
Kuo, WL ;
Gwadry, F ;
Jain, A ;
Kouros-Mehr, H ;
Fridlyand, J ;
Jain, A ;
Collins, C ;
Nishizuka, S ;
Tonon, G ;
Roschke, A ;
Gehlhaus, K ;
Kirsch, I ;
Scudiero, DA ;
Gray, JW ;
Weinstein, JN .
MOLECULAR CANCER THERAPEUTICS, 2006, 5 (04) :853-867
[5]   Multitask learning [J].
Caruana, R .
MACHINE LEARNING, 1997, 28 (01) :41-75
[6]   Seeking the Wisdom of Crowds Through Challenge-Based Competitions in Biomedical Research [J].
Costello, J. C. ;
Stolovitzky, G. .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2013, 93 (05) :396-398
[7]   The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups [J].
Curtis, Christina ;
Shah, Sohrab P. ;
Chin, Suet-Feung ;
Turashvili, Gulisa ;
Rueda, Oscar M. ;
Dunning, Mark J. ;
Speed, Doug ;
Lynch, Andy G. ;
Samarajiwa, Shamith ;
Yuan, Yinyin ;
Graef, Stefan ;
Ha, Gavin ;
Haffari, Gholamreza ;
Bashashati, Ali ;
Russell, Roslin ;
McKinney, Steven ;
Langerod, Anita ;
Green, Andrew ;
Provenzano, Elena ;
Wishart, Gordon ;
Pinder, Sarah ;
Watson, Peter ;
Markowetz, Florian ;
Murphy, Leigh ;
Ellis, Ian ;
Purushotham, Arnie ;
Borresen-Dale, Anne-Lise ;
Brenton, James D. ;
Tavare, Simon ;
Caldas, Carlos ;
Aparicio, Samuel .
NATURE, 2012, 486 (7403) :346-352
[8]   Modeling precision treatment of breast cancer [J].
Daemen, Anneleen ;
Griffith, Obi L. ;
Heiser, Laura M. ;
Wang, Nicholas J. ;
Enache, Oana M. ;
Sanborn, Zachary ;
Pepin, Francois ;
Durinck, Steffen ;
Korkola, James E. ;
Griffith, Malachi ;
Hur, Joe S. ;
Huh, Nam ;
Chung, Jongsuk ;
Cope, Leslie ;
Fackler, Mary Jo ;
Umbricht, Christopher ;
Sukumar, Saraswati ;
Seth, Pankaj ;
Sukhatme, Vikas P. ;
Jakkula, Lakshmi R. ;
Lu, Yiling ;
Mills, Gordon B. ;
Cho, Raymond J. ;
Collisson, Eric A. ;
van't Veer, Laura J. ;
Spellman, Paul T. ;
Gray, Joe W. .
GENOME BIOLOGY, 2013, 14 (10)
[9]   Genome-wide Methylation Analysis Identifies Genes Specific to Breast Cancer Hormone Receptor Status and Risk of Recurrence [J].
Fackler, Mary Jo ;
Umbricht, Christopher B. ;
Williams, Danielle ;
Argani, Pedram ;
Cruz, Leigh-Ann ;
Merino, Vanessa F. ;
Teo, Wei Wen ;
Zhang, Zhe ;
Huang, Peng ;
Visvananthan, Kala ;
Marks, Jeffrey ;
Ethier, Stephen ;
Gray, Joe W. ;
Wolff, Antonio C. ;
Cope, Leslie M. ;
Sukumar, Saraswati .
CANCER RESEARCH, 2011, 71 (19) :6195-6207
[10]  
Fallahi-Sichani M, 2013, NAT CHEM BIOL, V9, P708, DOI [10.1038/NCHEMBIO.1337, 10.1038/nchembio.1337]