Scaling laws for river networks

被引:186
作者
Maritan, A
Rinaldo, A
Rigon, R
Giacometti, A
Rodriguez-Iturbe, I
机构
[1] IST NAZL FIS NUCL, I-34014 TRIESTE, ITALY
[2] UNIV PADUA, IST IDRAUL G POLENI, I-35131 PADUA, ITALY
[3] UNIV TRENT, DIPARTIMENTO INGN CIVILE & AMBIENTALE, I-38050 TRENT, ITALY
[4] TEXAS A&M UNIV, DEPT CIVIL ENGN, COLLEGE STN, TX 77843 USA
[5] INST FESTKORPERFORSCH KERNFORSCH ANLANGE, D-52425 JULICH, GERMANY
关键词
D O I
10.1103/PhysRevE.53.1510
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Seemingly unrelated empirical hydrologic laws and several experimental facts related to the fractal geometry of the river basin are shown to find a natural explanation into a simple finite-size scaling ansatz for the power laws exhibited by cumulative distributions of river basin areas. Our theoretical predictions suggest that the exponent of the power law is directly related to a suitable fractal dimension of the boundaries, to the elongation of the basin, and to the scaling exponent of mainstream lengths. Observational evidence from digital elevation maps of natural basins and numerical simulations for optimal channel networks are found to be in good agreement with the theoretical predictions. Analytical results for Scheidegger's trees are exactly reproduced.
引用
收藏
页码:1510 / 1515
页数:6
相关论文
共 55 条
[1]   SELF-ORGANIZED CRITICALITY [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW A, 1988, 38 (01) :364-374
[2]   SELF-ORGANIZED CRITICALITY [J].
BAK, P ;
CHEN, K .
SCIENTIFIC AMERICAN, 1991, 264 (01) :46-53
[3]   SELF-ORGANIZED CRITICALITY IN THE GAME OF LIFE [J].
BAK, P ;
CHEN, K ;
CREUTZ, M .
NATURE, 1989, 342 (6251) :780-782
[4]   SELF-ORGANIZED CRITICALITY - AN EXPLANATION OF 1/F NOISE [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW LETTERS, 1987, 59 (04) :381-384
[5]   A FOREST-FIRE MODEL AND SOME THOUGHTS ON TURBULENCE [J].
BAK, P ;
CHEN, K ;
TANG, C .
PHYSICS LETTERS A, 1990, 147 (5-6) :297-300
[6]   WHY NATURE IS COMPLEX [J].
BAK, P ;
PACZUSKI, M .
PHYSICS WORLD, 1993, 6 (12) :39-43
[7]   DRAINAGE-BASIN PERIMETERS - A FRACTAL SIGNIFICANCE [J].
BREYER, SP ;
SNOW, RS .
GEOMORPHOLOGY, 1992, 5 (1-2) :143-157
[8]  
Feder J., 1988, FRACTALS PLENUM
[9]  
FISHER ME, 1971, CRITICAL PHENOMENA
[10]   CONTINUUM MODEL FOR RIVER NETWORKS [J].
GIACOMETTI, A ;
MARITAN, A ;
BANAVAR, JR .
PHYSICAL REVIEW LETTERS, 1995, 75 (03) :577-580