Real-time atomistic observation of structural phase transformations in individual hafnia nanorods

被引:60
作者
Hudak, Bethany M. [1 ]
Depner, Sean W. [2 ]
Waetzig, Gregory R. [3 ,4 ]
Talapatra, Anjana [4 ]
Arroyave, Raymundo [4 ]
Banerjee, Sarbajit [3 ,4 ]
Guiton, Beth S. [1 ,5 ]
机构
[1] Univ Kentucky, Dept Chem, 505 Rose St, Lexington, KY 40506 USA
[2] SUNY Buffalo, Dept Chem, Nat Sci Complex 359, Buffalo, NY 14260 USA
[3] Texas A&M Univ, Dept Chem, 3255 TAMU,580 Ross St, College Stn, TX 77843 USA
[4] Texas A&M Univ, Dept Mat Sci & Engn, 575 Ross St, College Stn, TX 77843 USA
[5] Oak Ridge Natl Lab, Mat Sci & Technol Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA
来源
NATURE COMMUNICATIONS | 2017年 / 8卷
基金
美国国家科学基金会;
关键词
TETRAGONAL HFO2; SIZE; CRYSTALLIZATION; THERMODYNAMICS; STABILIZATION; INTEGRATION; KINETICS; ROUTE; FILMS; ZRO2;
D O I
10.1038/ncomms15316
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-temperature phases of hafnium dioxide have exceptionally high dielectric constants and large bandgaps, but quenching them to room temperature remains a challenge. Scaling the bulk form to nanocrystals, while successful in stabilizing the tetragonal phase of isomorphous ZrO2, has produced nanorods with a twinned version of the room temperature monoclinic phase in HfO2. Here we use in situ heating in a scanning transmission electron microscope to observe the transformation of an HfO2 nanorod from monoclinic to tetragonal, with a transformation temperature suppressed by over 1000 degrees C from bulk. When the nanorod is annealed, we observe with atomic-scale resolution the transformation from twinned-monoclinic to tetragonal, starting at a twin boundary and propagating via coherent transformation dislocation; the nanorod is reduced to hafnium on cooling. Unlike the bulk displacive transition, nanoscale size-confinement enables us to manipulate the transformation mechanism, and we observe discrete nucleation events and sigmoidal nucleation and growth kinetics.
引用
收藏
页数:9
相关论文
共 55 条
[1]   A New MEMS-Based System for Ultra-High-Resolution Imaging at Elevated Temperatures [J].
Allard, Lawrence F. ;
Bigelow, Wilbur C. ;
Jose-Yacaman, Miguel ;
Nackashi, David P. ;
Damiano, John ;
Mick, Stephen E. .
MICROSCOPY RESEARCH AND TECHNIQUE, 2009, 72 (03) :208-215
[2]  
[Anonymous], 1973, Crystal Structures
[3]   Stabilization of metastable phases in hafnia owing to surface energy effects [J].
Batra, Rohit ;
Huan Doan Tran ;
Ramprasad, Rampi .
APPLIED PHYSICS LETTERS, 2016, 108 (17)
[4]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[5]   Stabilization of higher-κ tetragonal HfO2 by SiO2 admixture enabling thermally stable metal-insulator-metal capacitors [J].
Boescke, T. S. ;
Govindarajan, S. ;
Kirsch, P. D. ;
Hung, P. Y. ;
Krug, C. ;
Lee, B. H. ;
Heitmann, J. ;
Schroeder, U. ;
Pant, G. ;
Gnade, B. E. ;
Krautschneider, W. H. .
APPLIED PHYSICS LETTERS, 2007, 91 (07)
[6]   Scaling the gate dielectric: Materials, integration, and reliability [J].
Buchanan, DA .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1999, 43 (03) :245-264
[7]  
Burke K, 1998, ELECTRONIC DENSITY FUNCTIONAL THEORY, P81
[8]   First principles study of the structural, electronic, and dielectric properties of amorphous HfO2 [J].
Chen, Tsung-Ju ;
Kuo, Chin-Lung .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (06)
[9]   The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends [J].
Chevalier, Jerome ;
Gremillard, Laurent ;
Virkar, Anil V. ;
Clarke, David R. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2009, 92 (09) :1901-1920
[10]   Stabilization of Tetragonal HfO2 under Low Active Oxygen Source Environment in Atomic Layer Deposition [J].
Cho, Deok-Yong ;
Jung, Hyung Suk ;
Yu, Il-Hyuk ;
Yoon, Jung Ho ;
Kim, Hyo Kyeom ;
Lee, Sang Young ;
Jeon, Sang Ho ;
Han, Seungwu ;
Kim, Jeong Hwan ;
Park, Tae Joo ;
Park, Byeong-Gyu ;
Hwang, Cheol Seong .
CHEMISTRY OF MATERIALS, 2012, 24 (18) :3534-3543