Real-time atomistic observation of structural phase transformations in individual hafnia nanorods

被引:60
作者
Hudak, Bethany M. [1 ]
Depner, Sean W. [2 ]
Waetzig, Gregory R. [3 ,4 ]
Talapatra, Anjana [4 ]
Arroyave, Raymundo [4 ]
Banerjee, Sarbajit [3 ,4 ]
Guiton, Beth S. [1 ,5 ]
机构
[1] Univ Kentucky, Dept Chem, 505 Rose St, Lexington, KY 40506 USA
[2] SUNY Buffalo, Dept Chem, Nat Sci Complex 359, Buffalo, NY 14260 USA
[3] Texas A&M Univ, Dept Chem, 3255 TAMU,580 Ross St, College Stn, TX 77843 USA
[4] Texas A&M Univ, Dept Mat Sci & Engn, 575 Ross St, College Stn, TX 77843 USA
[5] Oak Ridge Natl Lab, Mat Sci & Technol Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA
来源
NATURE COMMUNICATIONS | 2017年 / 8卷
基金
美国国家科学基金会;
关键词
TETRAGONAL HFO2; SIZE; CRYSTALLIZATION; THERMODYNAMICS; STABILIZATION; INTEGRATION; KINETICS; ROUTE; FILMS; ZRO2;
D O I
10.1038/ncomms15316
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-temperature phases of hafnium dioxide have exceptionally high dielectric constants and large bandgaps, but quenching them to room temperature remains a challenge. Scaling the bulk form to nanocrystals, while successful in stabilizing the tetragonal phase of isomorphous ZrO2, has produced nanorods with a twinned version of the room temperature monoclinic phase in HfO2. Here we use in situ heating in a scanning transmission electron microscope to observe the transformation of an HfO2 nanorod from monoclinic to tetragonal, with a transformation temperature suppressed by over 1000 degrees C from bulk. When the nanorod is annealed, we observe with atomic-scale resolution the transformation from twinned-monoclinic to tetragonal, starting at a twin boundary and propagating via coherent transformation dislocation; the nanorod is reduced to hafnium on cooling. Unlike the bulk displacive transition, nanoscale size-confinement enables us to manipulate the transformation mechanism, and we observe discrete nucleation events and sigmoidal nucleation and growth kinetics.
引用
收藏
页数:9
相关论文
共 55 条
[31]   A novel reduction-oxidation synthetic route for hafnia [J].
Matovic, Branko ;
Pantic, Jelena ;
Lukovic, Jelena ;
Cebela, Maria ;
Dmitrovic, Svetlana ;
Mirkovic, Miljana ;
Prekaj, Marija .
CERAMICS INTERNATIONAL, 2016, 42 (01) :615-620
[32]   HIGH-PRECISION SAMPLING FOR BRILLOUIN-ZONE INTEGRATION IN METALS [J].
METHFESSEL, M ;
PAXTON, AT .
PHYSICAL REVIEW B, 1989, 40 (06) :3616-3621
[33]   Incipient Ferroelectricity in Al-Doped HfO2 Thin Films [J].
Mueller, Stefan ;
Mueller, Johannes ;
Singh, Aarti ;
Riedel, Stefan ;
Sundqvist, Jonas ;
Schroeder, Uwe ;
Mikolajick, Thomas .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (11) :2412-2417
[34]   Nanoscale Effects on Thermodynamics and Phase Equilibria in Oxide Systems [J].
Navrotsky, Alexandra .
CHEMPHYSCHEM, 2011, 12 (12) :2207-2215
[35]   A PERSPECTIVE ON MARTENSITIC NUCLEATION [J].
OLSON, GB ;
COHEN, M .
ANNUAL REVIEW OF MATERIALS SCIENCE, 1981, 11 :1-30
[36]   Atomic and electronic structure of amorphous and crystalline hafnium oxide: X-ray photoelectron spectroscopy and density functional calculations [J].
Perevalov, T. V. ;
Gritsenko, V. A. ;
Erenburg, S. B. ;
Badalyan, A. M. ;
Wong, Hei ;
Kim, C. W. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (05)
[37]   High dielectric constant oxides [J].
Robertson, J .
EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2004, 28 (03) :265-291
[38]   High-K materials and metal gates for CMOS applications [J].
Robertson, John ;
Wallace, Robert M. .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2015, 88 :1-41
[39]   CRYSTAL STRUCTURE OF MONOCLINIC HAFNIA AND COMPARISON WITH MONOCLINIC ZIRCONIA [J].
RUH, R ;
CORFIELD, PW .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1970, 53 (03) :126-+
[40]   Martensitic phase transformation of isolated HfO2, ZrO2, and HfxZr1-xO2 (0 < x < 1) nanocrystals [J].
Tang, J ;
Zhang, T ;
Zoogman, P ;
Fabbri, J ;
Chan, SW ;
Zhu, YM ;
Brus, LE ;
Steigerwald, ML .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (10) :1595-1602