Immobilization and surface characterization of NeutrAvidin biotin-binding protein on different hydrogel interlayers

被引:94
作者
Vermette, P
Gengenbach, T
Divisekera, U
Kambouris, PA
Griesser, HJ
Meagher, L
机构
[1] CSIRO Mol Sci, Clayton, Vic 3169, Australia
[2] Univ New S Wales, Cooperat Res Ctr Eye Res & Technol, CRCERT, Sydney, NSW 2052, Australia
关键词
NeutrAvidin; surface immobilization and characterization; atomic force microscopy; ELISA; X-ray photoelectron spectroscopy;
D O I
10.1016/S0021-9797(02)00185-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
For a number of potential applications, it is desirable to immobilize avidin class molecules onto solid supports and exploit their ability to bind biotinylated molecules with high affinity. NeutrAvidin molecules were surface immobilized in various ways. In this study, NeutrAvidin was covalently attached by carbodiimide chemistry onto carboxyl groups of polyacrylic acid and carboxymethyl-dextran hydrogel interlayers. A third strategy involved the affinity "docking" of NeutrAvidin onto a biotinylated poly(ethylene glycol) interlayer. These three interlayers were selected for their low nonspecific binding of proteins, which was expected to minimize surface binding of NeutrAvidin by nonspecific interfacial adsorption. X-ray photoelectron spectroscopy (XPS) analyses allowed detailed characterization of the multilayer fabrication steps. An ELISA assay was used to measure NeutrAvidin activity, which varied with the surface immobilization route. Atomic force microcopy (AFM) force measurements showed that the hydrogel interlayer contributed to a repulsive force and verified the specific interaction between biotinylated AFM tips and the NeutrAvidin surfaces. When a solution of free biotin was injected into the AFM liquid cell, the force curve changed substantially and became identical to that recorded between surfaces carrying no NeutrAvidin, indicating that the free solution biotin had displaced NeutrAvidin proteins off the PEG-biotin layer. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:13 / 26
页数:14
相关论文
共 58 条
[1]  
Beamson G., 1992, ADV MATER, DOI DOI 10.1002/ADMA.19930051035
[2]   INTERACTION BETWEEN BIOTIN LIPIDS AND STREPTAVIDIN IN MONOLAYERS - FORMATION OF ORIENTED TWO-DIMENSIONAL PROTEIN DOMAINS INDUCED BY SURFACE RECOGNITION [J].
BLANKENBURG, R ;
MELLER, P ;
RINGSDORF, H ;
SALESSE, C .
BIOCHEMISTRY, 1989, 28 (20) :8214-8221
[3]   PROPERTIES OF STREPTAVIDIN BIOTIN-BINDING PROTEIN PRODUCED BY STREPTOMYCETES [J].
CHAIET, L ;
WOLF, FJ .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1964, 106 (1-3) :1-&
[4]   The relationship between ligand-binding thermodynamics and protein-ligand interaction forces measured by atomic force microscopy [J].
Chilkoti, A ;
Boland, T ;
Ratner, BD ;
Stayton, PS .
BIOPHYSICAL JOURNAL, 1995, 69 (05) :2125-2130
[5]   A NONDESTRUCTIVE METHOD FOR DETERMINING THE SPRING CONSTANT OF CANTILEVERS FOR SCANNING FORCE MICROSCOPY [J].
CLEVELAND, JP ;
MANNE, S ;
BOCEK, D ;
HANSMA, PK .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1993, 64 (02) :403-405
[6]  
DAgostino R., 1990, PLASMA DEPOSITION TR
[7]   2-DIMENSIONAL CRYSTALS OF STREPTAVIDIN ON BIOTINYLATED LIPID LAYERS AND THEIR INTERACTIONS WITH BIOTINYLATED MACROMOLECULES [J].
DARST, SA ;
AHLERS, M ;
MELLER, PH ;
KUBALEK, EW ;
BLANKENBURG, R ;
RIBI, HO ;
RINGSDORF, H ;
KORNBERG, RD .
BIOPHYSICAL JOURNAL, 1991, 59 (02) :387-396
[8]  
DELANGE RJ, 1971, J BIOL CHEM, V246, P698
[9]   DIRECT MEASUREMENT OF COLLOIDAL FORCES USING AN ATOMIC FORCE MICROSCOPE [J].
DUCKER, WA ;
SENDEN, TJ ;
PASHLEY, RM .
NATURE, 1991, 353 (6341) :239-241
[10]   MEASUREMENT OF FORCES IN LIQUIDS USING A FORCE MICROSCOPE [J].
DUCKER, WA ;
SENDEN, TJ ;
PASHLEY, RM .
LANGMUIR, 1992, 8 (07) :1831-1836