Chronic unpredictable stress impairs long-term potentiation in rat hippocampal CA1 area and dentate gyrus in vitro

被引:219
作者
Alfarez, DN [1 ]
Joëls, M [1 ]
Krugers, HJ [1 ]
机构
[1] Univ Amsterdam, Swammerdam Inst Life Sci, Neurobiol Sect, NL-1012 WX Amsterdam, Netherlands
关键词
corticosterone; glucocorticoid receptor; hippocampus; mineralocorticoid receptor; synaptic plasticity;
D O I
10.1046/j.1460-9568.2003.02622.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Rises in corticosteroid levels, e.g. after acute stress, impair synaptic plasticity in the rat hippocampus when compared with the situation where levels are basal, i.e. under rest. We here addressed the question whether basal and raised levels of corticosterone affect synaptic plasticity similarly in animals that experienced chronic stress prior to corticosterone application. To this end, rats were exposed to a 21-day variable stress paradigm. Synaptic plasticity was examined in vitro in the dentate gyrus and CA1 hippocampal region, 24 h after exposure to the last stressor, i.e. when corticosterone levels are basal (low). First we observed that long-term potentiation was greatly impaired in both CA1 and dentate gyrus after 3 weeks of exposure to variable stress, when recorded under conditions where plasma corticosterone levels are low. Second, administration of 100 nm corticosterone in vitro reduced synaptic plasticity in CA1 of control rats, but induced no further impairment of synaptic plasticity in chronically stressed rats. Third, in the dentate gyrus, corticosterone incubation did not affect synaptic plasticity in slices from both control and stressed animals. We conclude that: (i) exposure to chronic variable stress per se reduces synaptic plasticity both in CA1 and dentate gyrus; and (ii) acute rises in corticosterone level induce no additional impairment of synaptic plasticity in the CA1 region of chronically stressed rats. It is tempting to speculate that the stress-induced reduction of hippocampal efficacy provides a cellular substrate for cognitive deficits in hippocampus-dependent learning tasks seen after prolonged exposure to stressful events.
引用
收藏
页码:1928 / 1934
页数:7
相关论文
共 49 条
[1]   Metaplasticity: The plasticity of synaptic plasticity [J].
Abraham, WC ;
Bear, MF .
TRENDS IN NEUROSCIENCES, 1996, 19 (04) :126-130
[2]  
Akirav I, 1999, J NEUROSCI, V19, P10530
[3]   Corticosterone and stress reduce synaptic potentiation in mouse hippocampal slices with mild stimulation [J].
Alfarez, DN ;
Wiegert, O ;
Joëls, M ;
Krugers, HJ .
NEUROSCIENCE, 2002, 115 (04) :1119-1126
[4]   THEORY FOR THE DEVELOPMENT OF NEURON SELECTIVITY - ORIENTATION SPECIFICITY AND BINOCULAR INTERACTION IN VISUAL-CORTEX [J].
BIENENSTOCK, EL ;
COOPER, LN ;
MUNRO, PW .
JOURNAL OF NEUROSCIENCE, 1982, 2 (01) :32-48
[5]  
Blank T, 2002, J NEUROSCI, V22, P3788
[6]   A SYNAPTIC MODEL OF MEMORY - LONG-TERM POTENTIATION IN THE HIPPOCAMPUS [J].
BLISS, TVP ;
COLLINGRIDGE, GL .
NATURE, 1993, 361 (6407) :31-39
[7]  
BODNOFF SR, 1995, J NEUROSCI, V15, P61
[8]   The paired-pulse index: A measure of hippocampal dentate granule cell modulation [J].
Bronzino, JD ;
Blaise, JH ;
Morgane, PJ .
ANNALS OF BIOMEDICAL ENGINEERING, 1997, 25 (05) :870-873
[9]  
Chrobak JJ, 2000, HIPPOCAMPUS, V10, P457, DOI 10.1002/1098-1063(2000)10:4<457::AID-HIPO12>3.0.CO
[10]  
2-Z