Topological graph polynomials and quantum field theory Part I: heat kernel theories

被引:26
作者
Krajewski, Thomas [1 ,2 ]
Rivasseau, Vincent [3 ]
Tanasa, Adrian [4 ,5 ]
Wang, Zhituo [4 ]
机构
[1] Univ Paris 11, Phys Theor Lab, CNRS, UMR 8627, F-91405 Orsay, France
[2] CNRS, Ctr Phys Theor, Case 907, UMR 6207, F-13288 Marseille 9, France
[3] Univ Paris 11, Phys Theor Lab, CNRS, UMR 8627, F-91405 Orsay, France
[4] Ecole Polytech, Ctr Phys Theor, CNRS, UMR 7644, F-91128 Palaiseau, France
[5] Inst Fiz Ingn Nucl H Hulubei, Dep Fiz Teoret, Bucharest 077125, Romania
关键词
Parametric representation in (non)commutative field theory; Tutte polynomial; Bollobas-Riordan polynomial; HOCHSCHILD CO-CHAINS; MODULI SPACE ACTIONS; BETA-FUNCTION; PARAMETRIC REPRESENTATION; RENORMALIZATION; INVARIANT; SCALAR; DUALITY; MOTIVES; MODELS;
D O I
10.4171/JNCG/49
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the relationship between the universal topological polynomials for graphs in mathematics and the parametric representation of Feynman amplitudes in quantum field theory. In this first article we consider translation invariant theories with the usual heat-kernel-based propagator. We show how the Symanzik polynomials of quantum field theory are particular multivariate versions of the Tutte polynomial, and how the new polynomials of noncommutative quantum field theory are special versions of the Bollobas-Riordan polynomials.
引用
收藏
页码:29 / 82
页数:54
相关论文
共 72 条
[1]   The Grassmann-Berezin calculus and theorems of the matrix-tree type [J].
Abdesselam, A .
ADVANCES IN APPLIED MATHEMATICS, 2004, 33 (01) :51-70
[2]  
Abdesselam A., 1995, LECT NOTES PHYSICS, V446, P7
[3]  
Aluffi P, 2009, COMMUN NUMBER THEORY, V3, P1
[4]  
[Anonymous], ARXIV08104703
[5]  
[Anonymous], ENCY MATH APPL
[6]  
[Anonymous], 1994, NONCOMMUTATIVE GEOME
[7]   One-Loop β Functions of a Translation-Invariant Renormalizable Noncommutative Scalar Model [J].
Ben Geloun, Joseph ;
Tanasa, Adrian .
LETTERS IN MATHEMATICAL PHYSICS, 2008, 86 (01) :19-32
[8]  
BERGERON F., 1998, Encyclopedia Math. Appl., V67
[9]   On motives associated to graph polynomials [J].
Bloch, Spencer ;
Esnault, Helene ;
Kreimer, Dirk .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 267 (01) :181-225
[10]   A polynomial of graphs on surfaces [J].
Bollobás, B ;
Riordan, O .
MATHEMATISCHE ANNALEN, 2002, 323 (01) :81-96