Reducing Sugar: New Functional Molecules for the Green Synthesis of Graphene Nanosheets

被引:1298
作者
Zhu, Chengzhou
Guo, Shaojun
Fang, Youxing
Dong, Shaojun [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, Changchun 130022, Peoples R China
基金
中国国家自然科学基金;
关键词
graphene nanosheets; reducing sugar; electrocatalysis; catecholamines; EXFOLIATED GRAPHITE OXIDE; AQUEOUS DISPERSIONS; RAMAN-SPECTRA; SHEETS; REDUCTION; CARBON; NANOPLATELETS; OXIDATION; ELECTRODE; ROUTE;
D O I
10.1021/nn1002387
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, we developed a green and facile approach to the synthesis of chemically converted graphene nanosheets (GNS) based on reducing sugars, such as glucose, fructose and sucrose using exfoliated graphite oxide (GO) as precursor. The obtained GM is characterized with atomic force microscopy, UV-visible absorption spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and so on. The merit of this method is that both the reducing agents themselves and the oxidized Products are environmentally friendly. It should be noted that, besides the mild reduction capability to GO, the oxidized products of reducing sugars could also play an important role as a capping reagent in stabilizing as-prepared GNS simultaneously, which exhibited good stability in water. This approach can open up the new possibility for preparing GNS in large-scale production alternatively. Moreover, it is found that GNS-based materials could be of great value for applications in various fields, such as good electrocatalytic activity toward catecholamines (dopamine, epinephrine, and norepinephrine).
引用
收藏
页码:2429 / 2437
页数:9
相关论文
共 37 条
[1]   Non-covalent functionalization of graphene sheets by sulfonated polyaniline [J].
Bai, Hua ;
Xu, Yuxi ;
Zhao, Lu ;
Li, Chun ;
Shi, Gaoquan .
CHEMICAL COMMUNICATIONS, 2009, (13) :1667-1669
[2]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[3]   A Facile One-step Method to Produce Graphene-CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials [J].
Cao, Aoneng ;
Liu, Zhen ;
Chu, Saisai ;
Wu, Minghong ;
Ye, Zhangmei ;
Cai, Zhengwei ;
Chang, Yanli ;
Wang, Shufeng ;
Gong, Qihuang ;
Liu, Yuanfang .
ADVANCED MATERIALS, 2010, 22 (01) :103-+
[4]   Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation [J].
Fan, Xiaobin ;
Peng, Wenchao ;
Li, Yang ;
Li, Xianyu ;
Wang, Shulan ;
Zhang, Guoliang ;
Zhang, Fengbao .
ADVANCED MATERIALS, 2008, 20 (23) :4490-4493
[5]   Interpretation of Raman spectra of disordered and amorphous carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2000, 61 (20) :14095-14107
[6]   A Green Approach to the Synthesis of Graphene Nanosheets [J].
Guo, Hui-Lin ;
Wang, Xian-Fei ;
Qian, Qing-Yun ;
Wang, Feng-Bin ;
Xia, Xing-Hua .
ACS NANO, 2009, 3 (09) :2653-2659
[7]   Three-Dimensional Pt-on-Pd Bimetallic Nanodendrites Supported on Graphene Nanosheet: Facile Synthesis and Used as an Advanced Nanoelectrocatalyst for Methanol Oxidation [J].
Guo, Shaojun ;
Dong, Shaojun ;
Wang, Erkang .
ACS NANO, 2010, 4 (01) :547-555
[8]   Aqueous dispersions of TCNQ-anion-stabilized graphene sheets [J].
Hao, Rui ;
Qian, Wen ;
Zhang, Luhui ;
Hou, Yanglong .
CHEMICAL COMMUNICATIONS, 2008, (48) :6576-6578
[9]   Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media [J].
Hassan, M. A. Hassan ;
Abdelsayed, Victor ;
Khder, Abd El Rahman S. ;
AbouZeid, Khaled M. ;
Terner, James ;
El-Shall, M. Samy ;
Al-Resayes, Saud I. ;
El-Azhary, Adel A. .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (23) :3832-3837
[10]   Raman spectra of graphite oxide and functionalized graphene sheets [J].
Kudin, Konstantin N. ;
Ozbas, Bulent ;
Schniepp, Hannes C. ;
Prud'homme, Robert K. ;
Aksay, Ilhan A. ;
Car, Roberto .
NANO LETTERS, 2008, 8 (01) :36-41