Counting of Rif1p and Rif2p on Saccharomyces cerevisiae telomeres regulates telomere length

被引:101
作者
Levy, DL [1 ]
Blackburn, EH [1 ]
机构
[1] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
关键词
D O I
10.1128/MCB.24.24.10857-10867.2004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Telomere length is negatively regulated by proteins of the telomeric DNA-protein complex. Rap1p in Saccharomyces cerevisiae binds the telomeric TG(1-3) repeat DNA, and the Rap1p C terminus interacts with Rif1p and Rif2p. We investigated how these three proteins negatively regulate telomere length. We show that direct tethering of each Rif protein to a telomere shortens that telomere proportionally to the number of tethered molecules, similar to previously reported counting of Rap1p. Surprisingly, Rif proteins could also regulate telomere length even when the Rap1p C terminus was absent, and tethered Rap1p counting was completely dependent on the Rif proteins. Thus, Rap1p counting is in fact Rif protein counting. In genetic settings that cause telomeres to be abnormally long, tethering even a single Rif2p molecule was sufficient for maximal effectiveness in preventing the telomere overelongation. We show that a heterologous protein oligomerization domain, the mammalian PDZ domain, when fused to Rap1p can confer telomere length control. We propose that a nucleation and spreading mechanism is involved in forming the higher-order telomere structure that regulates telomere length.
引用
收藏
页码:10857 / 10867
页数:11
相关论文
共 53 条
[1]   Rap1p telomere association is not required for mitotic stability of a C3TA2 telomere in yeast [J].
Alexander, MK ;
Zakian, VA .
EMBO JOURNAL, 2003, 22 (07) :1688-1696
[2]   Targeting assay to study the cis functions of human telomeric proteins:: Evidence for inhibition of telomerase by TRF1 and for activation of telomere degradation by TRF2 [J].
Ancelin, K ;
Brunori, M ;
Bauwens, S ;
Koering, CE ;
Brun, C ;
Ricoul, M ;
Pommier, JP ;
Sabatier, L ;
Gilson, E .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (10) :3474-3487
[3]   Telomere states and cell fates [J].
Blackburn, EH .
NATURE, 2000, 408 (6808) :53-56
[4]   The end of the (DNA) line [J].
Blackburn, EH .
NATURE STRUCTURAL BIOLOGY, 2000, 7 (10) :847-850
[5]   Sir proteins, Rif proteins, and Cdc13p bind Saccharomyces telomeres in vivo [J].
Bourns, BD ;
Alexander, MK ;
Smith, AM ;
Zakian, VA .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (09) :5600-5608
[6]  
Brachmann CB, 1998, YEAST, V14, P115
[7]   The number of vertebrate repeats can be regulated at yeast telomeres by Rap1-independent mechanisms [J].
Brevet, V ;
Berthiau, AS ;
Civitelli, L ;
Donini, P ;
Schramke, V ;
Géli, V ;
Ascenzioni, F ;
Gilson, E .
EMBO JOURNAL, 2003, 22 (07) :1697-1706
[8]   2 DNA-BINDING FACTORS RECOGNIZE SPECIFIC SEQUENCES AT SILENCERS, UPSTREAM ACTIVATING SEQUENCES, AUTONOMOUSLY REPLICATING SEQUENCES, AND TELOMERES IN SACCHAROMYCES-CEREVISIAE [J].
BUCHMAN, AR ;
KIMMERLY, WJ ;
RINE, J ;
KORNBERG, RD .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (01) :210-225
[9]   MULTIFUNCTIONAL YEAST HIGH-COPY-NUMBER SHUTTLE VECTORS [J].
CHRISTIANSON, TW ;
SIKORSKI, RS ;
DANTE, M ;
SHERO, JH ;
HIETER, P .
GENE, 1992, 110 (01) :119-122
[10]   RAP1 PROTEIN INTERACTS WITH YEAST TELOMERES INVIVO - OVERPRODUCTION ALTERS TELOMERE STRUCTURE AND DECREASES CHROMOSOME STABILITY [J].
CONRAD, MN ;
WRIGHT, JH ;
WOLF, AJ ;
ZAKIAN, VA .
CELL, 1990, 63 (04) :739-750