Genetic analyses of DNA-binding mutants in the catalytic core domain of human immunodeficiency virus type I integrase

被引:70
作者
Lu, R
Limón, A
Ghory, HZ
Engelman, A
机构
[1] Harvard Univ, Dept Canc Immunol & AIDS, Sch Med, Dana Farber Canc Inst, Boston, MA 02115 USA
[2] Harvard Univ, Dept Pathol, Sch Med, Boston, MA 02115 USA
关键词
D O I
10.1128/JVI.79.4.2493-2505.2005
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The catalytic core domain (CCD) of human immunodeficiency virus type 1 (HIV-1) integrase (IN) harbors the enzyme active site and binds viral and chromosomal DNA during integration. Thirty-five CCD mutant viruses were constructed, paying particular attention to conserved residues in the Phe(139)-Gln(146) flexible loop and abutting Ser(147)-Val(165) amphipathic alpha helix that were implicated from previous in vitro work as important for DNA binding. Defective viruses were typed as class I mutants (specifically blocked at integration) or pleiotropic class 11 mutants (additional particle assembly and/or reverse transcription defects). Whereas HIV-1(P145A) and HIV-1(Q146K) grew like the wild type, HIV-1(N144K) and HIV-1(Q148L) were class I mutants, reinforcing previous results that Gln-148 is important for DNA binding and uncovering for the first time an important role for Asn-144 in integration. HIV-1(Q62K), HIV-1(H67E), HIV-1(N120K), and HIV-1(N155K) were also class I mutants, supporting findings that Gln-62 and Asn-120 interact with viral and target DNA, respectively, and suggesting similar integration-specific roles for His-67 and Asn-155. Although results from complementation analyses established that IN functions as a multimer, the interplay between active-site and CCD DNA binding functions was unknown. By using Vpr-IN complementation, we determined that the CCD protomer that catalyzes integration also preferentially binds to viral and target DNA. We additionally characterized E138K as an intramolecular suppressor of Gln-62 mutant virus and IN. The results of these analyses highlight conserved CCD residues that are important for HIV-1 replication and integration and define the relationship between DNA binding and catalysis that occurs during integration in vivo.
引用
收藏
页码:2493 / 2505
页数:13
相关论文
共 76 条
[1]   PRODUCTION OF ACQUIRED IMMUNODEFICIENCY SYNDROME-ASSOCIATED RETROVIRUS IN HUMAN AND NONHUMAN CELLS TRANSFECTED WITH AN INFECTIOUS MOLECULAR CLONE [J].
ADACHI, A ;
GENDELMAN, HE ;
KOENIG, S ;
FOLKS, T ;
WILLEY, R ;
RABSON, A ;
MARTIN, MA .
JOURNAL OF VIROLOGY, 1986, 59 (02) :284-291
[2]   Prediction of HIV-1 integrase/viral DNA interactions in the catalytic domain by fast molecular docking [J].
Adesokan, AA ;
Roberts, VA ;
Lee, KW ;
Lins, RD ;
Briggs, JM .
JOURNAL OF MEDICINAL CHEMISTRY, 2004, 47 (04) :821-828
[3]   ANALYSIS OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 INTEGRASE MUTANTS [J].
ANSARILARI, MA ;
DONEHOWER, LA ;
GIBBS, RA .
VIROLOGY, 1995, 211 (01) :332-335
[4]   Role of the nonspecific DNA-binding region and α helices within the core domain of retroviral integrase in selecting target DNA sites for integration [J].
Appa, RS ;
Shin, CG ;
Lee, P ;
Chow, SA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (49) :45848-45855
[5]   HIV-1 infection requires a functional integrase NLS [J].
Bouyac-Bertoia, M ;
Dvorin, JD ;
Fouchier, RAM ;
Jenkins, Y ;
Meyer, BE ;
Wu, LI ;
Emerman, M ;
Malim, MH .
MOLECULAR CELL, 2001, 7 (05) :1025-1035
[6]   Structure-based mutagenesis of the human immunodeficiency virus type 1 DNA attachment site: Effects on integration and cDNA synthesis [J].
Brown, HEV ;
Chen, HM ;
Engelman, A .
JOURNAL OF VIROLOGY, 1999, 73 (11) :9011-9020
[7]   The catalytic domain of human immunodeficiency virus integrase: Ordered active site in the F185H mutant [J].
Bujacz, G ;
Alexandratos, J ;
ZhouLiu, Q ;
ClementMella, C ;
Wlodawer, A .
FEBS LETTERS, 1996, 398 (2-3) :175-178
[8]   Lack of integrase can markedly affect human immunodeficiency virus type 1 particle production in the presence of an active viral protease [J].
Bukovsky, A ;
Gottlinger, H .
JOURNAL OF VIROLOGY, 1996, 70 (10) :6820-6825
[9]   DOMAINS OF THE INTEGRASE PROTEIN OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 RESPONSIBLE FOR POLYNUCLEOTIDYL TRANSFER AND ZINC-BINDING [J].
BUSHMAN, FD ;
ENGELMAN, A ;
PALMER, I ;
WINGFIELD, P ;
CRAIGIE, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (08) :3428-3432
[10]   HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 INTEGRASE - EFFECT ON VIRAL REPLICATION OF MUTATIONS AT HIGHLY CONSERVED RESIDUES [J].
CANNON, PM ;
WILSON, W ;
BYLES, E ;
KINGSMAN, SM ;
KINGSMAN, AJ .
JOURNAL OF VIROLOGY, 1994, 68 (08) :4768-4775