Magnetite/graphene composites: microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries

被引:267
作者
Zhang, Ming
Lei, Danni
Yin, Xiaoming
Chen, Libao [1 ]
Li, Qiuhong
Wang, Yanguo
Wang, Taihong
机构
[1] Hunan Univ, Key Lab Micronano Optoelect Devices, Minist Educ, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
ANODE MATERIALS; FE3O4; ELECTRODES; NANOPARTICLES; TEMPERATURE; INSERTION; GROWTH; GAS;
D O I
10.1039/c0jm00638f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
By employing microwave irradiation as a heat source, magnetite/graphene composites were synthesized by depositing Fe3+ in the interspaces of graphene sheets. The Fe3O4 nanoparticles were dispersed on graphene sheets. As anode materials for lithium ion batteries, they showed high reversible capacities, as well as significantly enhanced cycling performances (about 650 mA h g(-1) after 50 cycles) and high rate capabilities (350 mA h g(-1) at 5 C). The enhancement could be attributed to graphene sheets, which served as electron conductors and buffers. Our results opened a new doorway for the application of graphene sheets to prepare anode materials of lithium ion batteries with superior performances.
引用
收藏
页码:5538 / 5543
页数:6
相关论文
共 35 条
[1]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[2]   Electrode properties of Mg2Ni alloy ball-milled with cobalt powder [J].
Chen, J ;
Bradhurst, DH ;
Dou, SX ;
Liu, HK .
ELECTROCHIMICA ACTA, 1998, 44 (2-3) :353-355
[3]   Electrochemical performance of polycrystalline CuO nanowires as anode material for Li ion batteries [J].
Chen, L. B. ;
Lu, N. ;
Xu, C. M. ;
Yu, H. C. ;
Wang, T. H. .
ELECTROCHIMICA ACTA, 2009, 54 (17) :4198-4201
[4]   Water-Soluble Magnetic-Functionalized Reduced Graphene Oxide Sheets: In situ Synthesis and Magnetic Resonance Imaging Applications [J].
Cong, Huai-Ping ;
He, Jia-Jun ;
Lu, Yang ;
Yu, Shu-Hong .
SMALL, 2010, 6 (02) :169-173
[5]   High-Yield Gas-Liquid Interfacial Synthesis of Highly Dispersed Fe3O4 Nanocrystals and Their Application in Lithium-Ion Batteries [J].
Cui, Zhi-Min ;
Hang, Ling-Yan ;
Song, Wei-Guo ;
Guo, Yu-Guo .
CHEMISTRY OF MATERIALS, 2009, 21 (06) :1162-1166
[6]   MECHANISMS FOR LITHIUM INSERTION IN CARBONACEOUS MATERIALS [J].
DAHN, JR ;
ZHENG, T ;
LIU, YH ;
XUE, JS .
SCIENCE, 1995, 270 (5236) :590-593
[7]   Recent development of carbon materials for Li ion batteries [J].
Endo, M ;
Kim, C ;
Nishimura, K ;
Fujino, T ;
Miyashita, K .
CARBON, 2000, 38 (02) :183-197
[8]   Silver catalysis in the fabrication of silicon nanowire arrays [J].
Fang, Hui ;
Wu, Yin ;
Zhao, Jiahao ;
Zhu, Jing .
NANOTECHNOLOGY, 2006, 17 (15) :3768-3774
[9]   Chemical and electrochemical recycling of the negative electrodes from spent Ni-Cd batteries [J].
Freitas, M. B. J. G. ;
Penha, T. R. ;
Sirtoli, S. .
JOURNAL OF POWER SOURCES, 2007, 163 (02) :1114-1119
[10]   Microwave-enhanced reaction rates for nanoparticle synthesis [J].
Gerbec, JA ;
Magana, D ;
Washington, A ;
Strouse, GF .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (45) :15791-15800