On-line counting of cysteine residues in peptides during electrospray ionization by electrogenerated tags and their application to protein identification

被引:36
作者
Dayon, L [1 ]
Roussel, C [1 ]
Prudent, M [1 ]
Lion, N [1 ]
Girault, HH [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Electrochem Phys & Analyt, Inst Sci & Ingn Chim, CH-1015 Lausanne, Switzerland
关键词
electrochemistry; mass fingerprinting; mass spectrometry; mass tag; proteomics;
D O I
10.1002/elps.200406144
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The electrochemically induced mass spectrometric tagging of cysteines by substituted hydroquinones was studied for peptides in a classical electrospray solvent (i.e., MeOH/H2O/AcOH 50/49/1). The tagging efficiency was tested with different hydroquinone compounds on an undecapeptide containing one cysteine residue. 2-Carboxymethylhydroquinone. was the most reactive probe and revealed to be suitable for cysteine quantification in peptides containing up to three cysteine residues, even in the case of two consecutive cysteines in the sequence. We demonstrate the compatibility of the on-line electrochemical tagging method for the cysteine content analysis of peptides coming from gel-free protein digestion procedures. The identification of bovine serum albumin and human alpha-lactalbumin digest samples in a peptide mapping strategy was greatly improved by the application of the electrotagging technique as post-column treatment. Indeed, the determination of cysteine content in the tryptic peptides provided powerful information in order to enhance the identification score as well as the discrimination against other protein candidates. The tagging method was then applied to the determination of four proteins in a model mixture.
引用
收藏
页码:238 / 247
页数:10
相关论文
共 37 条
[1]  
Adamczyk M, 1999, RAPID COMMUN MASS SP, V13, P1813, DOI 10.1002/(SICI)1097-0231(19990930)13:18<1813::AID-RCM722>3.0.CO
[2]  
2-1
[3]   Mass spectrometry-based proteomics [J].
Aebersold, R ;
Mann, M .
NATURE, 2003, 422 (6928) :198-207
[4]   Protein and peptide identification: the role of mass spectrometry in proteomics [J].
Ashcroft, AE .
NATURAL PRODUCT REPORTS, 2003, 20 (02) :202-215
[5]   NOMENCLATURE FOR PEPTIDE FRAGMENT IONS (POSITIVE-IONS) [J].
BIEMANN, K .
METHODS IN ENZYMOLOGY, 1990, 193 :886-887
[6]   ALKYLATION OF CYSTEINE WITH ACRYLAMIDE FOR PROTEIN-SEQUENCE ANALYSIS [J].
BRUNE, DC .
ANALYTICAL BIOCHEMISTRY, 1992, 207 (02) :285-290
[7]   Identifying the proteome:: software tools [J].
Fenyö, D .
CURRENT OPINION IN BIOTECHNOLOGY, 2000, 11 (04) :391-395
[8]  
Galvani M, 2001, ELECTROPHORESIS, V22, P2058, DOI 10.1002/1522-2683(200106)22:10<2058::AID-ELPS2058>3.0.CO
[9]  
2-Z
[10]  
Gevaert K, 2000, ELECTROPHORESIS, V21, P1145, DOI 10.1002/(SICI)1522-2683(20000401)21:6<1145::AID-ELPS1145>3.3.CO