Structure and morphology changes during in vitro degradation of electrospun poly(glycolide-co-lactide) nanofiber membrane

被引:229
作者
Zong, XH
Ran, SF
Kim, KS
Fang, DF
Hsiao, BS [1 ]
Chu, B
机构
[1] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
[2] Stonybrook Technol & Appl Res Inc, Stony Brook, NY 11790 USA
关键词
D O I
10.1021/bm025717o
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Electrospun poly(glycolide-co-lactide) (PLA10GA90, LA/GA ratio 10/90) biodegradable nanofiber membranes possessed very high surface area to volume ratios and were completely noncrystalline with a relatively lowered glass transition temperature. These characteristics led to very different structure, morphology, and property changes during in vitro degradation, which were examined systematically. A shrinkage study showed that the electrospun crystallizable but amorphous PLA10GA90 membranes exhibited a very small shrinkage percentage when compared with the electrospun membranes of noncrystallizable poly(lactide-co-glycolide) (PLA75GA25, LA/GA 75/25) and poly(D,L-lactide). Although the weight loss of electrospun PLA10GA90 membranes exhibited a similar degradation behavior as cast thin films, detailed studies showed that the structure and morphology changes in electrospun membranes followed different pathways during the hydrolytic degradation. After I day of degradation in buffer solution at 37 degreesC, electrospun PLA10GA90 membranes exhibited a sudden increase in crystallinity and glass transition temperature, due to the fast thermally induced crystallization process. The continuous increase in crystallinity and apparent crystal size, as well as the decrease in long period and lamellae thickness, indicated that the thermally induced crystallization was followed by a chain cleavage induced crystallization process. The mass loss rate was accelerated after 6 days of degradation. The increase in glass transition temperature during this period further confirmed that the degradation of PLA10GA90 nanofibers was initiated from the amorphous region within the lamellar superstructures. A mechanism of structure and morphology changes during in vitro degradation of electrospun PLA10GA90 nanofibers is proposed.
引用
收藏
页码:416 / 423
页数:8
相关论文
共 32 条
[1]   Tailoring tissue engineering scaffolds using electrostatic processing techniques: A study of poly(glycolic acid) electrospinning [J].
Boland, ED ;
Wnek, GE ;
Simpson, DG ;
Pawlowski, KJ ;
Bowlin, GL .
JOURNAL OF MACROMOLECULAR SCIENCE-PURE AND APPLIED CHEMISTRY, 2001, 38 (12) :1231-1243
[2]   Surface characterization of porous, biocompatible protein polymer thin films [J].
Buchko, CJ ;
Kozloff, KM ;
Martin, DC .
BIOMATERIALS, 2001, 22 (11) :1289-1300
[3]  
CHATANI Y, 1968, MAKROMOL CHEM, V113, P215
[4]   AN INVITRO STUDY OF THE EFFECT OF BUFFER ON THE DEGRADATION OF POLY(GLYCOLIC ACID) SUTURES [J].
CHU, CC .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 1981, 15 (01) :19-27
[5]   Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles [J].
Dunne, M ;
Corrigan, OI ;
Ramtoola, Z .
BIOMATERIALS, 2000, 21 (16) :1659-1668
[6]  
FREDERICKS RJ, 1984, J POLYM SCI POL PHYS, V57, P22
[7]   INVITRO CHEMICAL DEGRADATION OF POLY(GLYCOLIC ACID) PELLETS AND FIBERS [J].
GINDE, RM ;
GUPTA, RK .
JOURNAL OF APPLIED POLYMER SCIENCE, 1987, 33 (07) :2411-2429
[8]   The effect of initial polymer morphology on the degradation and drug release from polyglycolide [J].
Hurrell, S ;
Cameron, RE .
BIOMATERIALS, 2002, 23 (11) :2401-2409
[9]   Thermogelling biodegradable copolymer aqueous solutions for injectable protein delivery and tissue engineering [J].
Jeong, B ;
Lee, KM ;
Gutowska, A ;
An, YHH .
BIOMACROMOLECULES, 2002, 3 (04) :865-868
[10]  
King E, 1997, J APPL POLYM SCI, V66, P1681, DOI 10.1002/(SICI)1097-4628(19971128)66:9<1681::AID-APP6>3.0.CO