β-catenin signaling marks the prospective site of primitive streak formation in the mouse embryo

被引:141
作者
Mohamed, OA
Clarke, HJ
Dufort, D
机构
[1] McGill Univ, Hlth Ctr,Royal Victoria Hosp, Dept Obstet & Gynecol, Div Expt Med, Montreal, PQ H3A 1A1, Canada
[2] McGill Univ, Royal Victoria Hosp, Ctr Hlth, Dept Biol, Montreal, PQ H3A 1A1, Canada
关键词
gastrulation; primitive streak; beta-catenin; axis specification; mouse embryo; TCF/Lef; transgenic;
D O I
10.1002/dvdy.20135
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
beta-Catenin signaling has been shown to be involved in triggering axis formation in several organisms, including Xenopus and zebrafish. Genetic analysis has demonstrated that the Wnt/beta-catenin signaling pathway is also involved in axis formation in the mouse, since a targeted deletion of beta-catenin results in embryos that have a block in anterior-posterior axis formation, fail to initiate gastrulation, and do not form mesoderm. However, because beta-catenin is ubiquitously expressed, the precise time and cell types in which this signaling pathway is active during early embryonic development remain unknown. Thus, to better understand the role of the Wnt/beta-catenin signaling pathway in axis formation and mesoderm specification, we have examined both the distribution and signaling activity of beta-catenin during early embryonic development in the mouse. We show that the N-terminally nonphosphorylated form of beta-catenin as well as beta-catenin signaling is first detectable in the extraembryonic visceral endoderm in day 5.5 embryos. Before the initiation of gastrulation at day 6.0, beta-catenin signaling is asymmetrically distributed within the epiblast and is localized to a small group of cells adjacent to the embryonic-extraembryonic junction. At day 6.5 and onward, beta-catenin signaling was detected in the primitive streak and mature node. Thus, beta-catenin signaling precedes primitive streak formation and is present in epiblast cells that will go on to form the primitive streak. These results support a critical role for the Wnt/beta-catenin pathway in specifying cells to form the primitive streak and node in the mammalian embryo as well as identify a novel domain of Wnt/beta-catenin signaling activity during early embryogenesis. (C) 2004 Wiley-Liss, Inc.
引用
收藏
页码:416 / 424
页数:9
相关论文
共 64 条
[1]   Brachyury is a target gene of the Wnt/β-catenin signaling pathway [J].
Arnold, SJ ;
Stappert, J ;
Bauer, A ;
Kispert, A ;
Herrmann, BG ;
Kemler, R .
MECHANISMS OF DEVELOPMENT, 2000, 91 (1-2) :249-258
[2]  
Barker N, 2000, BIOESSAYS, V22, P961
[3]   Ectodermal Wnt3/β-catenin signaling is required for the establishment and maintenance of the apical ectodermal ridge [J].
Barrow, JR ;
Thomas, KR ;
Boussadia-Zahui, O ;
Moore, R ;
Kemler, R ;
Capecchi, MR ;
McMahon, AP .
GENES & DEVELOPMENT, 2003, 17 (03) :394-409
[4]   Axis development and early asymmetry in mammals [J].
Beddington, RSP ;
Robertson, EJ .
CELL, 1999, 96 (02) :195-209
[5]   Functional interaction of an axin homolog, conductin, with β-catenin, APC, and GSK3β [J].
Behrens, J ;
Jerchow, BA ;
Würtele, M ;
Grimm, J ;
Asbrand, C ;
Wirtz, R ;
Kühl, M ;
Wedlich, D ;
Birchmeier, W .
SCIENCE, 1998, 280 (5363) :596-599
[6]   A beta-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus [J].
Brannon, M ;
Gomperts, M ;
Sumoy, L ;
Moon, RT ;
Kimelman, D .
GENES & DEVELOPMENT, 1997, 11 (18) :2359-2370
[7]   TCF: Lady justice casting the final verdict on the outcome of Wnt signalling [J].
Brantjes, H ;
Barker, N ;
van Es, J ;
Clevers, H .
BIOLOGICAL CHEMISTRY, 2002, 383 (02) :255-261
[8]   All Tcf HMG box transcription factors interact with Groucho-related co-repressors [J].
Brantjes, H ;
Roose, J ;
van de Wetering, M ;
Clevers, H .
NUCLEIC ACIDS RESEARCH, 2001, 29 (07) :1410-1419
[9]   Wnt signaling: a common theme in animal development [J].
Cadigan, KM ;
Nusse, R .
GENES & DEVELOPMENT, 1997, 11 (24) :3286-3305
[10]  
Carnac G, 1996, DEVELOPMENT, V122, P3055