Quantum algorithms for algebraic problems

被引:177
作者
Childs, Andrew M. [1 ,2 ]
van Dam, Wim [3 ,4 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[3] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[4] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
HIDDEN SUBGROUP PROBLEM; QUERY COMPLEXITY; DISCRETE LOGARITHMS; COMPUTATIONAL-COMPLEXITY; ABELIAN-VARIETIES; SHORTEST VECTOR; DIFFIE-HELLMAN; UNIVERSAL; JONES; LATTICE;
D O I
10.1103/RevModPhys.82.1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum computers can execute algorithms that dramatically outperform classical computation. As the best-known example, Shor discovered an efficient quantum algorithm for factoring integers, whereas factoring appears to be difficult for classical computers. Understanding what other computational problems can be solved significantly faster using quantum algorithms is one of the major challenges in the theory of quantum computation, and such algorithms motivate the formidable task of building a large-scale quantum computer. This article reviews the current state of quantum algorithms, focusing on algorithms with superpolynomial speedup over classical computation and, in particular, on problems with an algebraic flavor.
引用
收藏
页码:1 / 52
页数:52
相关论文
共 256 条
[1]  
Aaronson S., 2005, Theor. Comput., V1, P47
[2]   Counting points on curves and Abelian varieties over finite fields [J].
Adleman, LM ;
Huang, MD .
JOURNAL OF SYMBOLIC COMPUTATION, 2001, 32 (03) :171-189
[3]   Quantum computability [J].
Adleman, LM ;
Demarrais, J ;
Huang, MDA .
SIAM JOURNAL ON COMPUTING, 1997, 26 (05) :1524-1540
[4]   PRIMES is in P [J].
Agrawal, M ;
Kayal, N ;
Saxena, N .
ANNALS OF MATHEMATICS, 2004, 160 (02) :781-793
[5]  
Aharonov D., 2007, ARXIVQUANTPH0702008
[6]  
Aharonov D., 2003, A simple proof that toffoli and hadamard are quantum universal
[7]   FAULT-TOLERANT QUANTUM COMPUTATION WITH CONSTANT ERROR RATE [J].
Aharonov, Dorit ;
Ben-Or, Michael .
SIAM JOURNAL ON COMPUTING, 2008, 38 (04) :1207-1282
[8]   Adiabatic quantum computation is equivalent to standard quantum computation [J].
Aharonov, Dorit ;
Van Dam, Wim ;
Kempe, Julia ;
Landau, Zeph ;
Lloyd, Seth ;
Regev, Oded .
SIAM JOURNAL ON COMPUTING, 2007, 37 (01) :166-194
[9]   A Polynomial Quantum Algorithm for Approximating the Jones Polynomial [J].
Aharonov, Dorit ;
Jones, Vaughan ;
Landau, Zeph .
ALGORITHMICA, 2009, 55 (03) :395-421
[10]  
Ajtai M., 1996, Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, P99, DOI 10.1145/237814.237838