Monte Carlo source model for photon beam radiotherapy: photon source characteristics

被引:44
作者
Fix, MK [1 ]
Keall, PJ [1 ]
Dawson, K [1 ]
Siebers, JV [1 ]
机构
[1] Virginia Commonwealth Univ, Dept Radiat Oncol, Richmond, VA 23298 USA
关键词
Monte Carlo simulation; beam model; source model; photon dose calculation;
D O I
10.1118/1.1803431
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
A major barrier to widespread clinical implementation of Monte Carlo dose calculation is the difficulty in characterizing the radiation source within a generalized source model. This work aims to develop a generalized three-component source model (target, primary collimator, flattening filter) for 6- and 18-MV photon beams that match full phase-space data (PSD). Subsource by subsource comparison of dose distributions, using either source PSD or the source model as input, allows accurate source characterization and has the potential to ease the commissioning procedure, since it is possible to obtain information about which subsource needs to be tuned. This source model is unique in that, compared to previous source models, it retains additional correlations among PS variables, which improves accuracy at nonstandard source-to-surface distances (SSDs). In our study, three-dimensional (3D) dose calculations were performed for SSDs ranging from 50 to 200 cm and for field sizes from 1 X 1 to 30 X 30 cm(2) as well as a 10 X 10 cm(2) field 5 cm off axis in each direction. The 3D dose distributions, using either full PSD or the source model as input, were compared in terms of dose-difference and distance-to-agreement. With this model, over 99% of the voxels agreed within +/-1% or I rum for the target, within 2% or 2 mm for the primary collimator, and within +/-2.5% or 2 mm for the flattening filter in all cases studied. For the dose distributions, 99% of the dose voxels agreed within 1% or 1 mm when the combined source model-including a charged particle source and the full PSD as input-was used. The accurate and general characterization of each photon source and knowledge of the subsource dose distributions should facilitate source model commissioning procedures by allowing scaling the histogram distributions representing the subsources to be tuned. (C) 2004 American Association of Physicists in Medicine.
引用
收藏
页码:3106 / 3121
页数:16
相关论文
共 41 条
[1]  
[Anonymous], 1986, NUMERICAL RECIPES C
[2]   MONTE-CARLO STUDY OF ACCELERATOR HEAD SCATTER [J].
CHANEY, EL ;
CULLIP, TJ ;
GABRIEL, TA .
MEDICAL PHYSICS, 1994, 21 (09) :1383-1390
[3]   A virtual source model for Monte Carlo modeling of arbitrary intensity distributions [J].
Chetty, I ;
DeMarco, JJ ;
Solberg, TD .
MEDICAL PHYSICS, 2000, 27 (01) :166-172
[4]   Photon beam characterization and modelling for Monte Carlo treatment planning [J].
Deng, J ;
Jiang, SB ;
Kapur, A ;
Li, JS ;
Pawlicki, T ;
Ma, CM .
PHYSICS IN MEDICINE AND BIOLOGY, 2000, 45 (02) :411-427
[5]   Energy spectra, angular spread, fluence profiles and dose distributions of 6 and 18 MV photon beams: results of Monte Carlo simulations for a Varian 2100EX accelerator [J].
Ding, GX .
PHYSICS IN MEDICINE AND BIOLOGY, 2002, 47 (07) :1025-1046
[6]   Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm [J].
Fippel, M .
MEDICAL PHYSICS, 1999, 26 (08) :1466-1475
[7]   A virtual photon energy fluence model for Monte Carlo dose calculation [J].
Fippel, M ;
Haryanto, F ;
Dohm, O ;
Nüsslin, F ;
Kriesen, S .
MEDICAL PHYSICS, 2003, 30 (03) :301-311
[8]   Monte Carlo simulation of a dynamic MLC based on a multiple source model [J].
Fix, MK ;
Manser, P ;
Born, EJ ;
Mini, R ;
Rüegsegger, P .
PHYSICS IN MEDICINE AND BIOLOGY, 2001, 46 (12) :3241-3257
[9]   Simple beam models for Monte Carlo photon beam dose calculations in radiotherapy [J].
Fix, MK ;
Keller, H ;
Rüegsegger, P ;
Born, EJ .
MEDICAL PHYSICS, 2000, 27 (12) :2739-2747
[10]   A multiple source model for 6 MV photon beam dose calculations using Monte Carlo [J].
Fix, MK ;
Stampanoni, M ;
Manser, P ;
Born, EJ ;
Mini, R ;
Rüegsegger, P .
PHYSICS IN MEDICINE AND BIOLOGY, 2001, 46 (05) :1407-1427