Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations:: Implications for cosmology

被引:5429
作者
Spergel, D. N. [1 ]
Bean, R.
Dore, O.
Nolta, M. R.
Bennett, C. L.
Dunkley, J.
Hinshaw, G.
Jarosik, N.
Komatsu, E.
Page, L.
Peiris, H. V.
Verde, L.
Halpern, M.
Hill, R. S.
Kogut, A.
Limon, M.
Meyer, S. S.
Odegard, N.
Tucker, G. S.
Weiland, J. L.
Wollack, E.
Wright, E. L.
机构
[1] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
[2] Cerro Tololo Interamer Observ, La Serena, Chile
[3] Cornell Univ, Ithaca, NY 14853 USA
[4] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada
[5] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[6] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[7] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[8] Univ Texas, Dept Astron, Austin, TX 78712 USA
[9] Univ Chicago, Dept Astrophys, KICP, Chicago, IL 60637 USA
[10] Univ Chicago, Dept Phys, KICP, Chicago, IL 60637 USA
[11] Univ Chicago, EFI, Chicago, IL 60637 USA
[12] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA
[13] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
[14] Sci Syst & Applicat Inc SSAI, Lanham, MD 20706 USA
[15] Brown Univ, Dept Phys, Providence, RI 02912 USA
[16] UCLA Astron, Los Angeles, CA 90095 USA
关键词
cosmic microwave background; cosmology : observations;
D O I
10.1086/513700
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A simple cosmological model with only six parameters ( matter density, Omega(m)h(2), baryon density, Omega(b)h(2), Hubble constant, H-0, amplitude of fluctuations, sigma(8), optical depth, tau, and a slope for the scalar perturbation spectrum, n(s)) fits not only the 3 year WMAP temperature and polarization data, but also small-scale CMB data, light element abundances, large-scale structure observations, and the supernova luminosity/distance relationship. Using WMAP data only, the best-fit values for cosmological parameters for the power-law flat Lambda cold dark matter ( Lambda CDM) model are ( Omega(m)h(2), Omega(b)h(2), h, n(s), tau, sigma(s)) = (0.1277(-0.0079)(+0.0080), 0.02229 +/- 0.00073, 0.732(-0.032)(+0.031), 0.958 +/- 0.016,0.089 +/- 0.030, 0.761(-0.048)(+0.049)). The 3 year data dramatically shrink the allowed volume in this six-dimensional parameter space. Assuming that the primordial fluctuations are adiabatic with a power-law spectrum, the WMAP data alone require dark matter and favor a spectral index that is significantly less than the Harrison- Zel'dovich-Peebles scale-invariant spectrum ( n(s) = 1, r = 0). Adding additional data sets improves the constraints on these components and the spectral slope. For power-law models, WMAP data alone puts an improved upper limit on the tensor-to-scalar ratio, r(0.002) < 0.65 ( 95% CL) and the combination of WMAP and the lensing-normalized SDSS galaxy survey implies r(0.002) < 0.30 ( 95% CL). Models that suppress large-scale power through a running spectral index or a large-scale cutoff in the power spectrum are a better fit to the WMAP and small-scale CMB data than the power-law Lambda CDM model; however, the improvement in the fit to the WMAP data is only Delta(2)(chi) = 3 for 1 extra degree of freedom. Models with a running-spectral index are consistent with a higher amplitude of gravity waves. In a flat universe, the combination of WMAP and the Supernova Legacy Survey ( SNLS) data yields a significant constraint on the equation of state of the dark energy, w = -0.967(-0.072)(+0.073). If we assume w = -1, then the deviations from the critical density, Omega(K), are small: the combination of WMAP and the SNLS data implies Omega(k) = -0.011 +/- 0.012. The combination of WMAP 3 year data plus the HST Key Project constraint on H-0 implies Omega(k) = -0.014 +/- 0.017 and Omega(Lambda) = 0.716 +/- 0.055. Even if we do not include the prior that the universe is flat, by combining WMAP, large-scale structure, and supernova data, we can still put a strong constraint on the dark energy equation of state, w = -1.08 +/- 0.12. For a flat universe, the combination of WMAP and other astronomical data yield a constraint on the sum of the neutrino masses, Sigma m(nu) < 0.66 eV (95%CL). Consistent with the predictions of simple inflationary theories, we detect no significant deviations from Gaussianity in the CMB maps using Minkowski functionals, the bispectrum, trispectrum, and a new statistic designed to detect large-scale anisotropies in the fluctuations.
引用
收藏
页码:377 / 408
页数:32
相关论文
共 312 条
[31]   An alternative to the cosmological "concordance model" [J].
Blanchard, A ;
Douspis, M ;
Rowan-Robinson, M ;
Sarkar, S .
ASTRONOMY & ASTROPHYSICS, 2003, 412 (01) :35-44
[32]   Lithium and lithium depletion in halo stars on extreme orbits [J].
Boesgaard, AM ;
Stephens, A ;
Deliyannis, CP .
ASTROPHYSICAL JOURNAL, 2005, 633 (01) :398-409
[33]   Determination of the cosmic distance scale from Sunyaev-Zel'dovich effect and chandra X-ray measurements of high-redshift galaxy clusters [J].
Bonamente, Massimiliano ;
Joy, Marshall K. ;
LaRoque, Samuel J. ;
Carlstrom, John E. ;
Reese, Erik D. ;
Dawson, Kyle S. .
ASTROPHYSICAL JOURNAL, 2006, 647 (01) :25-54
[34]  
BOND JR, 1980, PHYS REV LETT, V45, P1980, DOI 10.1103/PhysRevLett.45.1980
[35]   The Sunyaev-Zel'dovich effect in CMB-calibrated theories applied to the Cosmic Background Imager anisotropy power at l&gt;2000 [J].
Bond, JR ;
Contaldi, CR ;
Pen, UL ;
Pogosyan, D ;
Prunet, S ;
Ruetalo, MI ;
Wadsley, JW ;
Zhang, P ;
Mason, BS ;
Myers, ST ;
Pearson, TJ ;
Readhead, ACS ;
Sievers, JL ;
Udomprasert, PS .
ASTROPHYSICAL JOURNAL, 2005, 626 (01) :12-30
[36]   THE STATISTICS OF COSMIC BACKGROUND-RADIATION FLUCTUATIONS [J].
BOND, JR ;
EFSTATHIOU, G .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1987, 226 (03) :655-&
[37]   THE COLLISIONLESS DAMPING OF DENSITY-FLUCTUATIONS IN AN EXPANDING UNIVERSE [J].
BOND, JR ;
SZALAY, AS .
ASTROPHYSICAL JOURNAL, 1983, 274 (02) :443-468
[38]  
BOND JR, 1984, ASTROPHYS J, V285, pL45, DOI 10.1086/184362
[39]   CMB anisotropy in compact hyperbolic universes. I. Computing correlation functions [J].
Bond, JR ;
Pogosyan, D ;
Souradeep, T .
PHYSICAL REVIEW D, 2000, 62 (04) :1-20
[40]   Measuring Ωm with the ROSAT Deep Cluster Survey [J].
Borgani, S ;
Rosati, P ;
Tozzi, P ;
Stanford, SA ;
Eisenhardt, PR ;
Lidman, C ;
Holden, B ;
Della Ceca, R ;
Norman, C ;
Squires, G .
ASTROPHYSICAL JOURNAL, 2001, 561 (01) :13-21