Global sensitivity analysis in dynamic metabolic networks

被引:15
作者
Di Maggio, J. [1 ]
Diaz Ricci, J. C. [2 ]
Diaz, M. S. [1 ]
机构
[1] Univ Nacl Sur, CONICET, PLAPIQUI, RA-8000 Bahia Blanca, Buenos Aires, Argentina
[2] Univ Nacl Tucuman, CONICET, INSIBIO, RA-4000 San Miguel De Tucuman, Tucuman, Argentina
关键词
Global sensitivity analysis; Metabolic networks; DAE systems; FLUX BALANCE MODELS; ESCHERICHIA-COLI; MATHEMATICAL-MODELS; SYSTEMS; UNCERTAINTIES; FORMULATION; BEHAVIOR; OUTPUT; GROWTH;
D O I
10.1016/j.compchemeng.2010.01.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work, we have performed global sensitivity analysis on a large-scale dynamic metabolic network through variance-based techniques. Time profiles for sensitivity indices have been calculated for each parameter, based on Sobol' approach (2001). The global sensitivity analysis has been carried out on a dynamic model for the Embden-Meyerhof-Parnas pathway, the phosphotransferase system and the pentose-phosphate pathway of Escherichia coli K-12 strain W3110 (Chassagnole et al., 2002). The model comprises eighteen dynamic mass balance equations for extracellular glucose and intracellular metabolites, thirty kinetic rate expressions and seven additional algebraic equations that represent concentration profiles for co-metabolites. Each parameter has been considered to have a normal probability distribution centered on its nominal value and sample sizes of two thousand and five hundred scenarios have been considered. The preceding analysis has allowed identification of eleven parameters as the most influential ones on the complex metabolic network under study. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:770 / 781
页数:12
相关论文
共 42 条
[21]   Sequential Monte Carlo methods for dynamic systems [J].
Liu, JS ;
Chen, R .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (443) :1032-1044
[22]   SIMPLE CONSTRAINED-OPTIMIZATION VIEW OF ACETATE OVERFLOW IN ESCHERICHIA-COLI [J].
MAJEWSKI, RA ;
DOMACH, MM .
BIOTECHNOLOGY AND BIOENGINEERING, 1990, 35 (07) :732-738
[23]   Dynamic sensitivity analysis for metabolic systems [J].
Mauch, K ;
Arnold, S ;
Reuss, M .
CHEMICAL ENGINEERING SCIENCE, 1997, 52 (15) :2589-2598
[24]   GLOBAL SENSITIVITY ANALYSIS - A COMPUTATIONAL IMPLEMENTATION OF THE FOURIER AMPLITUDE SENSITIVITY TEST (FAST) [J].
MCRAE, GJ ;
TILDEN, JW ;
SEINFELD, JH .
COMPUTERS & CHEMICAL ENGINEERING, 1982, 6 (01) :15-25
[25]   FACTORIAL SAMPLING PLANS FOR PRELIMINARY COMPUTATIONAL EXPERIMENTS [J].
MORRIS, MD .
TECHNOMETRICS, 1991, 33 (02) :161-174
[26]   A cybernetic modeling framework for analysis of metabolic systems [J].
Namjoshi, AA ;
Ramkrishna, D .
COMPUTERS & CHEMICAL ENGINEERING, 2005, 29 (03) :487-498
[27]   Visualizing regulatory interdependencies and parameter sensitivities in biochemical network models [J].
Noack, S. ;
Wahl, A. ;
Haunschild, M. ;
Qeli, E. ;
Freisleben, B. ;
Wiechert, W. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 79 (04) :991-998
[28]   A comparison between the uncertainties in model parameters and in forcing functions: its application to a 3D water-quality model [J].
Pastres, R ;
Ciavatta, S .
ENVIRONMENTAL MODELLING & SOFTWARE, 2005, 20 (08) :981-989
[29]   Parameter estimation in metabolic flux balance models for batch fermentation -: formulation & solution using Differential Variational Inequalities (DVIs) [J].
Raghunathan, Arvind U. ;
Ricardo Perez-Correa, J. ;
Agosin, Eduardo ;
Biegler, Lorenz T. .
ANNALS OF OPERATIONS RESEARCH, 2006, 148 (01) :251-270
[30]  
Ricci JCD, 1996, J THEOR BIOL, V178, P145