DNA polymerase proofreading: Multiple roles maintain genome stability

被引:121
作者
Reha-Krantz, Linda J. [1 ]
机构
[1] Univ Alberta, Dept Biol Sci, Edmonton, AB T6G 2E9, Canada
来源
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS | 2010年 / 1804卷 / 05期
基金
加拿大健康研究院; 加拿大自然科学与工程研究理事会;
关键词
DNA polymerase proofreading; DNA replication fidelity; Mutator and antimutator DNA polymerases; Proofreading pathway; Active site switching; Okazaki fragment maturation; DEOXYRIBONUCLEIC-ACID POLYMERASE; 5 EXONUCLEASE ACTIVITY; OKAZAKI FRAGMENT MATURATION; ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; AMINO-ACID; CRYSTAL-STRUCTURE; 2-AMINOPURINE FLUORESCENCE; MISMATCH REPAIR; ENZYMATIC-SYNTHESIS;
D O I
10.1016/j.bbapap.2009.06.012
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
DNA polymerase proofreading is a spell-checking activity that enables DNA polymerases to remove newly made nucleotide incorporation errors from the primer terminus before further primer extension and also prevents translesion synthesis. DNA polymerase proofreading improves replication fidelity similar to 100-fold, which is required by many organisms to prevent unacceptably high, life threatening mutation loads. DNA polymerase proofreading has been studied by geneticists and biochemists for >35 years. A historical perspective and the basic features of DNA polymerase proofreading are described here, but the goal of this review is to present recent advances in the elucidation of the proofreading pathway and to describe roles of DNA polymerase proofreading beyond mismatch correction that are also important for maintaining genome stability. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1049 / 1063
页数:15
相关论文
共 173 条
[11]   AN ACTIVE FRAGMENT OF DNA POLYMERASE PRODUCED BY PROTEOLYTIC CLEAVAGE [J].
BRUTLAG, D ;
ATKINSON, MR ;
SETLOW, P ;
KORNBERG, A .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1969, 37 (06) :982-+
[12]  
BRUTLAG D, 1972, J BIOL CHEM, V247, P241
[13]   Targeted gene evolution in Escherichia coli using a highly error-prone DNA polymerase I [J].
Camps, M ;
Naukkarinen, J ;
Johnson, BP ;
Loeb, LA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (17) :9727-9732
[14]   KINETIC CHARACTERIZATION OF THE POLYMERASE AND EXONUCLEASE ACTIVITIES OF THE GENE-43 PROTEIN OF BACTERIOPHAGE-T4 [J].
CAPSON, TL ;
PELISKA, JA ;
KABOORD, BF ;
FREY, MW ;
LIVELY, C ;
DAHLBERG, M ;
BENKOVIC, SJ .
BIOCHEMISTRY, 1992, 31 (45) :10984-10994
[15]   Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase [J].
Chabes, A ;
Georgieva, B ;
Domkin, V ;
Zhao, XL ;
Rothstein, R ;
Thelander, L .
CELL, 2003, 112 (03) :391-401
[16]  
Chastain PD, 2000, MOL CELL, V6, P803, DOI 10.1016/S1097-2765(00)00081-2
[17]   Facile polymerization of dNTPs bearing unnatural base analogues by DNA polymerase α and Klenow fragment (DNA polymerase I) [J].
Chiaramonte, M ;
Moore, CL ;
Kincaid, K ;
Kuchta, RD .
BIOCHEMISTRY, 2003, 42 (35) :10472-10481
[18]  
CLAYTON LK, 1979, J BIOL CHEM, V254, P1902
[19]   Human mismatch repair - Reconstitution of a nick-directed bidirectional reaction [J].
Constantin, N ;
Dzantiev, L ;
Kadyrov, FA ;
Modrich, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (48) :39752-39761
[20]   Functional evidence that the 3′-5′ exonuclease domain of Escherichia coli DNA polymerase I employs a divalent metal ion in leaving group stabilization [J].
Curley, JF ;
Joyce, CM ;
Piccirilli, JA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (51) :12691-12692